1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#![cfg_attr(not(test), no_std)]

//! A simple, single-future, non-blocking executor intended for building state machines. Designed to be no-std and embedded friendly.
//!
//! This executor TOTALLY IGNORES wakers and context, meaning that all async functions should expect to be polled repeatedly until completion.
//!
//! ## Inspiration
//!
//! So, I'm really not good at async, but I like the idea of being able to use the ability to yield or await on tasks that will require some time to complete.
//!
//! The idea here is that you would write one, top level `async` function that would either eventually resolve to some value, or that will run forever (to act as a state machine).
//!
//! ## How it works
//!
//! 1. You write some async functions
//! 2. You call the "top level" async function
//! 3. You poll on it until it resolves (or forever)
//!
//! Note: This demo is available in the [`demo/` folder](./../demo) of this repo.
//!
//! ### Step 1 - You write some async functions
//!
//! Here's the "context" of our state machine, describing a couple of high level behaviors, as well as individual substeps.
//!
//! ```rust
//! struct Demo {
//!     lol: u32,
//! }
//!
//! impl Demo {
//!     async fn entry(&mut self) {
//!         for _ in 0..10 {
//!             self.entry_1().await;
//!             self.entry_2().await;
//!         }
//!     }
//!
//!     async fn entry_1(&mut self) {
//!         self.start_at_zero().await;
//!         self.add_one_until_ten().await;
//!         self.sub_one_until_zero().await;
//!     }
//!
//!     async fn entry_2(&mut self) {
//!         self.start_at_five().await;
//!         self.sub_one_until_zero().await;
//!         self.add_one_until_ten().await;
//!     }
//!
//!     async fn start_at_zero(&mut self) {
//!         self.lol = 0;
//!     }
//!
//!     async fn start_at_five(&mut self) {
//!         self.lol = 5;
//!     }
//!
//!     async fn add_one_until_ten(&mut self) {
//!         loop {
//!             delay(self).await; // simulate fake delays/not ready state
//!             self.lol += 1;
//!             if self.lol >= 10 {
//!                 return;
//!             }
//!         }
//!     }
//!
//!     async fn sub_one_until_zero(&mut self) {
//!         loop {
//!             delay(self).await; // simulate fake delays/not ready state
//!             self.lol -= 1;
//!             if self.lol == 0 {
//!                 return;
//!             }
//!         }
//!     }
//! }
//!
//! # use core::{
//! #     future::Future,
//! #     pin::Pin,
//! #     sync::atomic::{AtomicU32, Ordering},
//! #     task::{Context, Poll},
//! # };
//! # static FAKE: AtomicU32 = AtomicU32::new(0);
//! # struct CountFuture;
//! # impl Future for CountFuture {
//! #     type Output = ();
//! #     fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
//! #         let x = FAKE.fetch_add(1, Ordering::SeqCst);
//! #         print!("{}, ", x);
//! #         if (x % 5) == 0 {
//! #             Poll::Ready(())
//! #         } else {
//! #             cx.waker().wake_by_ref();
//! #             Poll::Pending
//! #         }
//! #     }
//! # }
//! #
//! # async fn delay(ctxt: &mut Demo) {
//! #     println!("delay says lol: {}", ctxt.lol);
//! #     let x = CountFuture;
//! #     x.await;
//! #     println!("and delay!");
//! # }
//! ```
//!
//! We can also make simple little futures for code that needs to be polled until ready:
//!
//! ```rust
//! # use core::{
//! #     future::Future,
//! #     pin::Pin,
//! #     sync::atomic::{AtomicU32, Ordering},
//! #     task::{Context, Poll},
//! # };
//! static FAKE: AtomicU32 = AtomicU32::new(0);
//! struct CountFuture;
//! impl Future for CountFuture {
//!     type Output = ();
//!     fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
//!         let x = FAKE.fetch_add(1, Ordering::SeqCst);
//!         print!("{}, ", x);
//!         if (x % 5) == 0 {
//!             Poll::Ready(())
//!         } else {
//!             cx.waker().wake_by_ref();
//!             Poll::Pending
//!         }
//!     }
//! }
//!
//! async fn delay(ctxt: &mut Demo) {
//!     println!("delay says lol: {}", ctxt.lol);
//!     let x = CountFuture;
//!     x.await;
//!     println!("and delay!");
//! }
//! #
//! # struct Demo {
//! #     lol: u32,
//! # }
//! ```
//!
//! ### Step 2 - You call the "top level" async function
//!
//! ```rust
//! # struct Demo {
//! #     lol: u32,
//! # }
//! #
//! # impl Demo {
//! #     async fn entry(&mut self) {
//! #         panic!()
//! #     }
//! # }
//! #
//!
//! use cassette::Cassette;
//!
//! fn main() {
//!     // Make a new struct
//!     let mut demo = Demo { lol: 100 };
//!
//!     // Call the entry point future, and pin it
//!     let x = core::pin::pin!(demo.entry());
//!
//!     // Give the pinned future to Cassette
//!     // for execution
//!     let mut cm = Cassette::new(x);
//!
//!     /* ... */
//! }
//! ```
//!
//! ### Step 3 - You poll on it until it resolves (or forever)
//!
//! ```rust
//! # use cassette::Cassette;
//!
//! # struct Demo {
//! #     lol: u32,
//! # }
//! #
//! # impl Demo {
//! #     async fn entry(&mut self) {
//! #     }
//! # }
//! #
//! fn main() {
//! #    // Make a new struct
//! #    let mut demo = Demo { lol: 100 };
//! #
//! #    // Call the entry point future, and pin it
//! #    let x = core::pin::pin!(demo.entry());
//! #
//! #    // Give the pinned future to Cassette
//! #    // for execution
//! #    let mut cm = Cassette::new(x);
//!     /* ... */
//!
//!     loop {
//!         if let Some(x) = cm.poll_on() {
//!             println!("Done!: `{:?}`", x);
//!             break;
//!         }
//!     }
//! }
//! ```
//!
//! ## A larger demo
//!
//! If you'd like to see a larger demo, I used Cassette to implement an I2C peripheral bootloader state machine for a `thumbv6m` target. You can check out [that PR](https://github.com/sprocket-board/sprocket-boot/pull/1) for more context.
//!
//! ## License
//!
//! [MIT](https://github.com/jamesmunns/cassette/blob/main/LICENSE-MIT) or [Apache 2.0](https://github.com/jamesmunns/cassette/blob/main/LICENSE-APACHE)

use core::{
    future::Future,
    pin::Pin,
    task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
};

fn no_op(_: *const ()) {}
fn no_op_clone(_: *const ()) -> RawWaker {
    noop_raw_waker()
}

static RWVT: RawWakerVTable = RawWakerVTable::new(no_op_clone, no_op, no_op, no_op);

#[inline]
fn noop_raw_waker() -> RawWaker {
    RawWaker::new(core::ptr::null(), &RWVT)
}

/// A single-future non-blocking executor
pub struct Cassette<T>
where
    T: Future + Unpin,
{
    thing: T,
    fake_wake: Waker,
    done: bool,
}

impl<T> Cassette<T>
where
    T: Future + Unpin,
{
    /// Create a new Cassette containing a single pinned future
    ///
    /// # Example
    ///
    /// ```
    /// use cassette::Cassette;
    ///
    /// struct Demo {
    ///     lol: u32,
    /// }
    ///
    /// impl Demo {
    ///     async fn entry(&mut self) {
    ///         /* Huzzah! */
    ///     }
    /// }
    ///
    /// // Make a new struct
    /// let mut demo = Demo { lol: 100 };
    ///
    /// // Call the entry point future, and pin it
    /// let x = core::pin::pin!(demo.entry());
    ///
    /// // Give the pinned future to Cassette
    /// // for execution
    /// let mut cm = Cassette::new(x);
    /// ```
    pub fn new(thing: T) -> Self {
        let raw_waker = noop_raw_waker();
        let waker = unsafe { Waker::from_raw(raw_waker) };

        Self {
            thing,
            fake_wake: waker,
            done: false,
        }
    }

    /// Perform a "single step" of the future contained by this
    /// Cassette.
    ///
    /// This is intended to be "polled to completion", which
    /// might be for forever.
    ///
    /// # Example
    ///
    /// ```
    /// use cassette::Cassette;
    ///
    /// struct Demo {
    ///     lol: u32,
    /// }
    ///
    /// impl Demo {
    ///     async fn entry(&mut self) {
    ///         /* Huzzah! */
    ///     }
    /// }
    ///
    /// // Make a new struct
    /// let mut demo = Demo { lol: 100 };
    ///
    /// // Call the entry point future, and pin it
    /// let x = core::pin::pin!(demo.entry());
    ///
    /// // Give the pinned future to Cassette
    /// // for execution
    /// let mut cm = Cassette::new(x);
    ///
    /// while cm.poll_on().is_none() { }
    /// println!("Future done!");
    /// ```
    ///
    /// ## Panics
    ///
    /// This method will panic if the contained future has already
    /// been completed as `Poll::Ready(_)`.
    pub fn poll_on(&mut self) -> Option<<T as Future>::Output> {
        assert!(!self.done, "Polled a completed future");

        let mut ctxt = Context::from_waker(&self.fake_wake);
        let y = Pin::new(&mut self.thing).poll(&mut ctxt);
        match y {
            Poll::Pending => None,
            Poll::Ready(yes) => {
                self.done = true;
                Some(yes)
            }
        }
    }

    /// Block on the contained future forever
    ///
    /// ## Panics
    ///
    /// This method will panic if the contained future has already
    /// been completed as `Poll::Ready(_)`.
    pub fn block_on(mut self) -> <T as Future>::Output {
        assert!(!self.done, "Blocked on completed future");

        loop {
            if let Some(val) = self.poll_on() {
                return val;
            }
        }
    }

    /// Has the contained future resolved to `Poll::Ready(_)` yet?
    pub fn is_done(&self) -> bool {
        self.done
    }
}

/// Cooperatively gives up a timeslice to the task scheduler.
#[inline]
pub async fn yield_now() {
    YieldNow(false).await
}

struct YieldNow(bool);

impl Future for YieldNow {
    type Output = ();

    // inspired by async-std v1.9.0
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        if !self.0 {
            self.0 = true;

            // Wake immediately, so we get polled again
            // in the next timeslice.
            //
            // Not necessary if our executor is `Cassette`, but
            // on other executors we might produce a deadlock
            // otherwise.
            cx.waker().wake_by_ref();
            Poll::Pending
        } else {
            Poll::Ready(())
        }
    }
}

/// Runs a future to completion on the current thread.
///
/// This function will block the caller until the given future has completed.
///
/// Be aware that this function performs busy-waiting; it repeatedly polls
/// the future until completion and completely ignores context and wakers.
pub fn block_on<F: Future>(f: F) -> <F as Future>::Output {
    let f = core::pin::pin!(f);
    Cassette::new(f).block_on()
}