1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
//! 📷 📐 Geometric models of cameras for photogrammetry
//!
//! ![pinhole model
//! image](https://strawlab.org/assets/images/pinhole-model-ladybug.png)
//!
//! (3D model by
//! [Adan](https://sketchfab.com/3d-models/lowpoly-lady-bug-90b59b5185b14c52944573f236eb7175),
//! [CC by 4.0](https://creativecommons.org/licenses/by/4.0/))
//!
//! # About
//!
//! The crate implements geometric models of cameras which may be useful for
//! [photogrammetry](https://en.wikipedia.org/wiki/Photogrammetry).
//!
//! The crate provides a couple camera models, [the pinhole perspective
//! camera](https://en.wikipedia.org/wiki/Pinhole_camera_model) and the
//! [orthographic
//! camera](https://en.wikipedia.org/wiki/Orthographic_projection). Adding
//! another camera model entails implementing the
//! [`IntrinsicParameters`](trait.IntrinsicParameters.html) trait. See the
//! [`opencv_ros_camera`](https://crates.io/crates/opencv-ros-camera) crate
//! for one example.
//!
//! Also provided is the function
//! [`best_intersection_of_rays()`](fn.best_intersection_of_rays.html) which
//! determines the best 3D point corresponding to the intersection of multiple
//! rays. Thus, this crate is also useful for multiple view geometry.
//!
//! Characteristics:
//!
//! * Extensive use of static typing to ensure no unpleasant runtime surprises
//!   with coordinate system, matrix dimensions, and so on.
//! * Serialization and deserialization using [`serde`](https://docs.rs/serde).
//!   Enable with the `serde-serialize` cargo feature.
//! * Linear algebra and types from the [`nalgebra`](https://docs.rs/nalgebra)
//!   crate.
//! * Possible to create new camera models by implementing the
//!   [`IntrinsicParameters`](trait.IntrinsicParameters.html) trait. While the
//!   camera models implemented in this crate are linear, there is no
//!   requirement that implementations are linear. For example, the
//!   [`opencv_ros_camera`](https://crates.io/crates/opencv-ros-camera) crate
//!   exhibits [distortion](https://en.wikipedia.org/wiki/Distortion_(optics)).
//! * [`ExtrinsicParameters`](struct.ExtrinsicParameters.html) based on the
//!   [`nalgebra::Isometry3`](https://docs.rs/nalgebra/latest/nalgebra/geometry/type.Isometry3.html)
//!   type to handle the camera pose.
//! * No standard library is required (disable the default features to disable
//!   use of `std`) and no heap allocations. In other words, this can run on a
//!   bare-metal microcontroller with no OS.
//! * Extensive documentation and tests.
//! * Requires rust version 1.40 or greater.
//!
//! # Testing
//!
//! ## Unit tests
//!
//! To run the basic unit tests:
//!
//! ```text
//! cargo test
//! ```
//!
//! To run all unit tests:
//!
//! ```text
//! cargo test --features serde-serialize
//! ```
//!
//! ## Test for `no_std`
//!
//! Since the `thumbv7em-none-eabihf` target does not have `std` available, we
//! can build for it to check that our crate does not inadvertently pull in
//! std. The unit tests require std, so cannot be run on a `no_std` platform.
//! The following will fail if a std dependency is present:
//!
//! ```text
//! # install target with: "rustup target add thumbv7em-none-eabihf"
//! cargo build --no-default-features --target thumbv7em-none-eabihf
//! ```
//!
//! # Examples
//!
//! ## Example - projecting 3D world coordinates to 2D pixel coordinates.
//!
//! ```
//! use cam_geom::*;
//! use nalgebra::{Matrix2x3, Unit, Vector3};
//!
//! // Create two points in the world coordinate frame.
//! let world_coords = Points::new(Matrix2x3::new(
//!     1.0, 0.0, 0.0, // point 1
//!     0.0, 1.0, 0.0, // point 2
//! ));
//!
//! // perepective parameters - focal length of 100, no skew, pixel center at (640,480)
//! let intrinsics = IntrinsicParametersPerspective::from(PerspectiveParams {
//!     fx: 100.0,
//!     fy: 100.0,
//!     skew: 0.0,
//!     cx: 640.0,
//!     cy: 480.0,
//! });
//!
//! // Set extrinsic parameters - camera at (10,0,0), looing at (0,0,0), up (0,0,1)
//! let camcenter = Vector3::new(10.0, 0.0, 0.0);
//! let lookat = Vector3::new(0.0, 0.0, 0.0);
//! let up = Unit::new_normalize(Vector3::new(0.0, 0.0, 1.0));
//! let pose = ExtrinsicParameters::from_view(&camcenter, &lookat, &up);
//!
//! // Create a `Camera` with both intrinsic and extrinsic parameters.
//! let camera = Camera::new(intrinsics, pose);
//!
//! // Project the original 3D coordinates to 2D pixel coordinates.
//! let pixel_coords = camera.world_to_pixel(&world_coords);
//!
//! // Print the results.
//! for i in 0..world_coords.data.nrows() {
//!     let wc = world_coords.data.row(i);
//!     let pix = pixel_coords.data.row(i);
//!     println!("{} -> {}", wc, pix);
//! }
//! ```
//!
//! This will print:
//!
//! ```text
//!   ┌       ┐
//!   │ 1 0 0 │
//!   └       ┘
//!
//!  ->
//!   ┌         ┐
//!   │ 640 480 │
//!   └         ┘
//!
//!
//!
//!   ┌       ┐
//!   │ 0 1 0 │
//!   └       ┘
//!
//!  ->
//!   ┌         ┐
//!   │ 650 480 │
//!   └         ┘
//! ```
//!
//!
//! ## Example - intersection of rays
//!
//! ```
//! use cam_geom::*;
//! use nalgebra::RowVector3;
//!
//! // Create the first ray.
//!     let ray1 = Ray::<WorldFrame, _>::new(
//!     RowVector3::new(1.0, 0.0, 0.0), // origin
//!     RowVector3::new(0.0, 1.0, 0.0), // direction
//! );
//!
//! // Create the second ray.
//! let ray2 = Ray::<WorldFrame, _>::new(
//!     RowVector3::new(0.0, 1.0, 0.0), // origin
//!     RowVector3::new(1.0, 0.0, 0.0), // direction
//! );
//!
//! // Compute the best intersection.
//! let result = best_intersection_of_rays(&[ray1, ray2]).unwrap();
//!
//! // Print the result.
//! println!("result: {}", result.data);
//! ```
//!
//! This will print:
//!
//! ```text
//! result:
//!   ┌       ┐
//!   │ 1 1 0 │
//!   └       ┘
//! ```

#![deny(rust_2018_idioms, unsafe_code, missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
extern crate core as std;

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};

use nalgebra::{
    allocator::Allocator,
    storage::{Owned, Storage},
    DefaultAllocator, Dim, DimName, Isometry3, Matrix, MatrixMN, Point3, RealField, Vector3, U1,
    U2, U3,
};

#[cfg(feature = "std")]
pub mod intrinsic_test_utils;

mod intrinsics_perspective;
pub use intrinsics_perspective::{IntrinsicParametersPerspective, PerspectiveParams};

mod intrinsics_orthographic;
pub use intrinsics_orthographic::{IntrinsicParametersOrthographic, OrthographicParams};

mod extrinsics;
pub use extrinsics::ExtrinsicParameters;

mod camera;
pub use camera::Camera;

/// Defines the different possible types of ray bundles.
pub mod ray_bundle_types;

mod ray_intersection;
pub use ray_intersection::best_intersection_of_rays;

/// All possible errors.
#[cfg_attr(feature = "std", derive(Debug))]
#[non_exhaustive]
pub enum Error {
    /// Invalid input.
    InvalidInput,
    /// Singular Value Decomposition did not converge.
    SvdFailed,
    /// At least two rays are needed to compute their intersection.
    MinimumTwoRaysNeeded,
    /// Invalid rotation matrix
    InvalidRotationMatrix,
}

#[cfg(feature = "std")]
impl std::error::Error for Error {}

#[cfg(feature = "std")]
impl std::fmt::Display for Error {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        std::fmt::Debug::fmt(self, f)
    }
}

/// 2D pixel locations on the image sensor.
///
/// These pixels are "distorted" - with barrel and pincushion distortion - if
/// the camera model incorporates such. (Undistorted pixels are handled
/// internally within the camera model.)
///
/// This is a newtype wrapping an `nalgebra::Matrix`.
#[derive(Clone)]
pub struct Pixels<R: RealField, NPTS: Dim, STORAGE> {
    /// The matrix storing pixel locations.
    pub data: nalgebra::Matrix<R, NPTS, U2, STORAGE>,
}

impl<R: RealField, NPTS: Dim, STORAGE> Pixels<R, NPTS, STORAGE> {
    /// Create a new Pixels instance
    #[inline]
    pub fn new(data: nalgebra::Matrix<R, NPTS, U2, STORAGE>) -> Self {
        Self { data }
    }
}

/// A coordinate system in which points and rays can be defined.
pub trait CoordinateSystem {}

/// Implementations of [`CoordinateSystem`](trait.CoordinateSystem.html).
pub mod coordinate_system {

    #[cfg(feature = "serde-serialize")]
    use serde::{Deserialize, Serialize};

    /// Coordinates in the camera coordinate system.
    ///
    /// The camera center is at (0,0,0) at looking at (0,0,1) with up as
    /// (0,-1,0) in this coordinate frame.
    #[derive(Debug, Clone, PartialEq)]
    #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
    pub struct CameraFrame {}
    impl crate::CoordinateSystem for CameraFrame {}

    /// Coordinates in the world coordinate system.
    ///
    /// The camera center is may be located at an arbitrary position and pointed
    /// in an arbitrary direction in this coordinate frame.
    #[derive(Debug, Clone, PartialEq)]
    #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
    pub struct WorldFrame {}
    impl crate::CoordinateSystem for WorldFrame {}
}
pub use coordinate_system::{CameraFrame, WorldFrame};

/// 3D points. Can be in any [`CoordinateSystem`](trait.CoordinateSystem.html).
///
/// This is a newtype wrapping an `nalgebra::Matrix`.
pub struct Points<Coords: CoordinateSystem, R: RealField, NPTS: Dim, STORAGE> {
    coords: std::marker::PhantomData<Coords>,
    /// The matrix storing point locations.
    pub data: nalgebra::Matrix<R, NPTS, U3, STORAGE>,
}

impl<Coords, R, NPTS, STORAGE> Points<Coords, R, NPTS, STORAGE>
where
    Coords: CoordinateSystem,
    R: RealField,
    NPTS: Dim,
{
    /// Create a new Points instance from the underlying storage.
    #[inline]
    pub fn new(data: nalgebra::Matrix<R, NPTS, U3, STORAGE>) -> Self {
        Self {
            coords: std::marker::PhantomData,
            data,
        }
    }
}

/// 3D rays. Can be in any [`CoordinateSystem`](trait.CoordinateSystem.html).
///
/// Any given `RayBundle` will have a particular bundle type, which implements
/// the [`Bundle`](trait.Bundle.html) trait.
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct RayBundle<Coords, BType, R, NPTS, StorageMultiple>
where
    Coords: CoordinateSystem,
    BType: Bundle<R>,
    R: RealField,
    NPTS: Dim,
    StorageMultiple: Storage<R, NPTS, U3>,
{
    coords: std::marker::PhantomData<Coords>,
    /// The matrix storing the ray data.
    pub data: Matrix<R, NPTS, U3, StorageMultiple>,
    bundle_type: BType,
}

impl<Coords, BType, R, NPTS, StorageMultiple> RayBundle<Coords, BType, R, NPTS, StorageMultiple>
where
    Coords: CoordinateSystem,
    BType: Bundle<R>,
    R: RealField,
    NPTS: DimName,
    StorageMultiple: Storage<R, NPTS, U3>,
    DefaultAllocator: Allocator<R, NPTS, U3>,
{
    /// get directions of each ray in bundle
    #[inline]
    pub fn directions(&self) -> Matrix<R, NPTS, U3, Owned<R, NPTS, U3>> {
        self.bundle_type.directions(&self.data)
    }

    /// get centers (origins) of each ray in bundle
    #[inline]
    pub fn centers(&self) -> Matrix<R, NPTS, U3, Owned<R, NPTS, U3>> {
        self.bundle_type.centers(&self.data)
    }
}

impl<Coords, BType, R> RayBundle<Coords, BType, R, U1, Owned<R, U1, U3>>
where
    Coords: CoordinateSystem,
    BType: Bundle<R>,
    R: RealField,
{
    /// Return the single ray from the RayBundle with exactly one ray.
    #[inline]
    pub fn to_single_ray(&self) -> Ray<Coords, R> {
        self.bundle_type.to_single_ray(&self.data)
    }
}

impl<Coords, R, NPTS, StorageMultiple>
    RayBundle<Coords, crate::ray_bundle_types::SharedOriginRayBundle<R>, R, NPTS, StorageMultiple>
where
    Coords: CoordinateSystem,
    R: RealField,
    NPTS: Dim,
    StorageMultiple: Storage<R, NPTS, U3>,
{
    /// Create a new RayBundle instance in which all rays share origin at zero.
    ///
    /// The number of points allocated is given by the `npts` parameter, which
    /// should agree with the `NPTS` type. The coordinate system is given by the
    /// `Coords` type.
    pub fn new_shared_zero_origin(data: Matrix<R, NPTS, U3, StorageMultiple>) -> Self {
        let bundle_type = crate::ray_bundle_types::SharedOriginRayBundle::new_shared_zero_origin();
        Self::new(bundle_type, data)
    }
}

impl<Coords, R, NPTS, StorageMultiple>
    RayBundle<
        Coords,
        crate::ray_bundle_types::SharedDirectionRayBundle<R>,
        R,
        NPTS,
        StorageMultiple,
    >
where
    Coords: CoordinateSystem,
    R: RealField,
    NPTS: Dim,
    StorageMultiple: Storage<R, NPTS, U3>,
{
    /// Create a new RayBundle instance in which all rays share +z direction.
    ///
    /// The number of points allocated is given by the `npts` parameter, which
    /// should agree with the `NPTS` type. The coordinate system is given by the
    /// `Coords` type.
    pub fn new_shared_plusz_direction(data: Matrix<R, NPTS, U3, StorageMultiple>) -> Self {
        let bundle_type =
            crate::ray_bundle_types::SharedDirectionRayBundle::new_plusz_shared_direction();
        Self::new(bundle_type, data)
    }
}

impl<Coords, BType, R, NPTS, StorageMultiple> RayBundle<Coords, BType, R, NPTS, StorageMultiple>
where
    Coords: CoordinateSystem,
    BType: Bundle<R>,
    R: RealField,
    NPTS: Dim,
    StorageMultiple: Storage<R, NPTS, U3>,
{
    /// Create a new RayBundle instance from the underlying storage.
    ///
    /// The coordinate system is given by the `Coords` type and the bundle type
    /// (e.g. shared origin or shared direction) is given by the `BType`.
    #[inline]
    fn new(bundle_type: BType, data: nalgebra::Matrix<R, NPTS, U3, StorageMultiple>) -> Self {
        Self {
            coords: std::marker::PhantomData,
            data,
            bundle_type,
        }
    }

    /// get a 3D point on the ray, obtained by adding the direction(s) to the origin(s)
    ///
    /// The distance of the point from the ray bundle center is not definted and
    /// can be arbitrary.
    #[inline]
    pub fn point_on_ray(&self) -> Points<Coords, R, NPTS, Owned<R, NPTS, U3>>
    where
        DefaultAllocator: Allocator<R, NPTS, U3>,
    {
        self.bundle_type.point_on_ray(&self.data)
    }

    /// get a 3D point on the ray at a defined distance from the origin(s)
    #[inline]
    pub fn point_on_ray_at_distance(
        &self,
        distance: R,
    ) -> Points<Coords, R, NPTS, Owned<R, NPTS, U3>>
    where
        DefaultAllocator: Allocator<R, NPTS, U3>,
    {
        self.bundle_type
            .point_on_ray_at_distance(&self.data, distance)
    }

    #[inline]
    fn to_pose<OutFrame>(
        &self,
        pose: Isometry3<R>,
    ) -> RayBundle<OutFrame, BType, R, NPTS, Owned<R, NPTS, U3>>
    where
        R: RealField,
        NPTS: Dim,
        OutFrame: CoordinateSystem,
        DefaultAllocator: Allocator<R, NPTS, U3>,
    {
        self.bundle_type.to_pose(pose, &self.data)
    }
}

/// A single ray. Can be in any [`CoordinateSystem`](trait.CoordinateSystem.html).
///
/// A `RayBundle` with only one ray can be converted to this with
/// `RayBundle::to_single_ray()`.
pub struct Ray<Coords, R: RealField> {
    /// The center (origin) of the ray.
    pub center: MatrixMN<R, U1, U3>,
    /// The direction of the ray.
    pub direction: MatrixMN<R, U1, U3>,
    c: std::marker::PhantomData<Coords>,
}

impl<Coords, R: RealField> Ray<Coords, R> {
    /// Create a new ray from center (origin) and direction.
    #[inline]
    pub fn new(center: MatrixMN<R, U1, U3>, direction: MatrixMN<R, U1, U3>) -> Self {
        Self {
            center,
            direction,
            c: std::marker::PhantomData,
        }
    }
}

/// Specifies operations which any RayBundle must implement.
pub trait Bundle<R>
where
    R: RealField,
{
    /// Return a single ray from a `RayBundle` with exactly one ray.
    fn to_single_ray<Coords>(&self, self_data: &MatrixMN<R, U1, U3>) -> Ray<Coords, R>
    where
        Coords: CoordinateSystem;

    /// Get directions of each ray in bundle.
    ///
    /// This can be inefficient, because when not every ray has a different
    /// direction (which is the case for the `SharedDirectionRayBundle` type),
    /// this will nevertheless copy the single direction `NPTS` times.
    fn directions<'a, NPTS, StorageIn>(
        &self,
        self_data: &'a Matrix<R, NPTS, U3, StorageIn>,
    ) -> Matrix<R, NPTS, U3, Owned<R, NPTS, U3>>
    where
        NPTS: DimName,
        StorageIn: Storage<R, NPTS, U3>,
        DefaultAllocator: Allocator<R, NPTS, U3>;

    /// Get centers of each ray in bundle.
    ///
    /// This can be inefficient, because when not every ray has a different
    /// center (which is the case for the `SharedOriginRayBundle` type),
    /// this will nevertheless copy the single center `NPTS` times.
    fn centers<'a, NPTS, StorageIn>(
        &self,
        self_data: &'a Matrix<R, NPTS, U3, StorageIn>,
    ) -> Matrix<R, NPTS, U3, Owned<R, NPTS, U3>>
    where
        NPTS: DimName,
        StorageIn: Storage<R, NPTS, U3>,
        DefaultAllocator: Allocator<R, NPTS, U3>;

    /// Return points on on the input rays.
    ///
    /// The distance of the point from the ray bundle center is not definted and
    /// can be arbitrary.
    fn point_on_ray<NPTS, StorageIn, OutFrame>(
        &self,
        self_data: &Matrix<R, NPTS, U3, StorageIn>,
    ) -> Points<OutFrame, R, NPTS, Owned<R, NPTS, U3>>
    where
        Self: Sized,
        NPTS: Dim,
        StorageIn: Storage<R, NPTS, U3>,
        OutFrame: CoordinateSystem,
        DefaultAllocator: Allocator<R, NPTS, U3>;

    /// Return points on on the input rays at a defined distance from the origin(s).
    fn point_on_ray_at_distance<NPTS, StorageIn, OutFrame>(
        &self,
        self_data: &Matrix<R, NPTS, U3, StorageIn>,
        distance: R,
    ) -> Points<OutFrame, R, NPTS, Owned<R, NPTS, U3>>
    where
        Self: Sized,
        NPTS: Dim,
        StorageIn: Storage<R, NPTS, U3>,
        OutFrame: CoordinateSystem,
        DefaultAllocator: Allocator<R, NPTS, U3>;

    /// Convert the input rays by the pose given.
    fn to_pose<NPTS, StorageIn, OutFrame>(
        &self,
        pose: Isometry3<R>,
        self_data: &Matrix<R, NPTS, U3, StorageIn>,
    ) -> RayBundle<OutFrame, Self, R, NPTS, Owned<R, NPTS, U3>>
    where
        Self: Sized,
        R: RealField,
        NPTS: Dim,
        StorageIn: Storage<R, NPTS, U3>,
        OutFrame: CoordinateSystem,
        DefaultAllocator: Allocator<R, NPTS, U3>;
}

/// A geometric model of camera coordinates to pixels (and vice versa).
pub trait IntrinsicParameters<R>: std::fmt::Debug + Clone
where
    R: RealField,
{
    /// What type of ray bundle is returned when projecting pixels to rays.
    type BundleType;

    /// project pixels to camera coords
    fn pixel_to_camera<IN, NPTS>(
        &self,
        pixels: &Pixels<R, NPTS, IN>,
    ) -> RayBundle<coordinate_system::CameraFrame, Self::BundleType, R, NPTS, Owned<R, NPTS, U3>>
    where
        Self::BundleType: Bundle<R>,
        IN: Storage<R, NPTS, U2>,
        NPTS: Dim,
        DefaultAllocator: Allocator<R, U1, U2>, // needed to make life easy for implementors
        DefaultAllocator: Allocator<R, NPTS, U2>, // needed to make life easy for implementors
        DefaultAllocator: Allocator<R, NPTS, U3>;

    /// project camera coords to pixel coordinates
    fn camera_to_pixel<IN, NPTS>(
        &self,
        camera: &Points<coordinate_system::CameraFrame, R, NPTS, IN>,
    ) -> Pixels<R, NPTS, Owned<R, NPTS, U2>>
    where
        IN: Storage<R, NPTS, U3>,
        NPTS: Dim,
        DefaultAllocator: Allocator<R, NPTS, U2>;
}

#[cfg(test)]
mod tests {
    use super::*;
    use nalgebra::convert;

    #[cfg(not(feature = "std"))]
    compile_error!("tests require std");

    #[test]
    fn rays_shared_origin() {
        // Create rays in world coorindates all with a shared origin at zero.
        let b1 = RayBundle::<WorldFrame, _, _, _, _>::new_shared_zero_origin(
            MatrixMN::<_, U2, U3>::new(
                1.0, 2.0, 3.0, // ray 1
                4.0, 5.0, 6.0, // ray 2
            ),
        );

        // Get points on rays at a specific distance.
        let actual_dist1 = b1.point_on_ray_at_distance(1.0).data;

        {
            // Manually compte what these points should be.
            let r1m = (1.0_f64 + 4.0 + 9.0).sqrt();
            let r2m = (16.0_f64 + 25.0 + 36.0).sqrt();
            let expected = MatrixMN::<_, U2, U3>::new(
                1.0 / r1m,
                2.0 / r1m,
                3.0 / r1m, // ray 1
                4.0 / r2m,
                5.0 / r2m,
                6.0 / r2m, // ray 2
            );

            // Check the points vs the manually computed versions.
            approx::assert_abs_diff_eq!(actual_dist1, expected, epsilon = 1e-10);
        }

        // Get points on rays at a specific distance.
        let actual_dist10 = b1.point_on_ray_at_distance(10.0).data;

        // Get points on rays at arbitrary distance.
        let actual = b1.point_on_ray().data;

        for i in 0..actual_dist1.nrows() {
            assert_on_line(actual_dist1.row(i), actual_dist10.row(i), actual.row(i));
        }
    }

    #[test]
    fn rays_shared_direction() {
        // Create rays in world coorindates all with a shared direction (+z).
        let b1 =
            RayBundle::<WorldFrame, _, _, _, _>::new_shared_plusz_direction(
                MatrixMN::<_, U2, U3>::new(
                    1.0, 2.0, 0.0, // ray 1
                    3.0, 4.0, 0.0, // ray 2
                ),
            );

        // Get points on rays at a specific distance.
        let actual_dist10 = b1.point_on_ray_at_distance(10.0).data;

        {
            // Manually compte what these points should be.
            let expected_dist10 = MatrixMN::<_, U2, U3>::new(
                1.0, 2.0, 10.0, // ray 1
                3.0, 4.0, 10.0, // ray 2
            );

            // Check the points vs the manually computed versions.
            approx::assert_abs_diff_eq!(actual_dist10, expected_dist10, epsilon = 1e-10);
        }

        // Get points on rays at a specific distance.
        let actual_dist0 = b1.point_on_ray_at_distance(0.0).data;

        {
            // Manually compte what these points should be.
            let expected_dist0 = MatrixMN::<_, U2, U3>::new(
                1.0, 2.0, 0.0, // ray 1
                3.0, 4.0, 0.0, // ray 2
            );

            // Check the points vs the manually computed versions.
            approx::assert_abs_diff_eq!(actual_dist0, expected_dist0, epsilon = 1e-10);
        }

        // Get points on rays at arbitrary distance.
        let actual = b1.point_on_ray().data;

        for i in 0..actual_dist0.nrows() {
            assert_on_line(actual_dist0.row(i), actual_dist10.row(i), actual.row(i));
        }
    }

    fn assert_on_line<R, S1, S2, S3>(
        line_a: Matrix<R, U1, U3, S1>,
        line_b: Matrix<R, U1, U3, S2>,
        test_pt: Matrix<R, U1, U3, S3>,
    ) where
        R: RealField,
        S1: Storage<R, U1, U3>,
        S2: Storage<R, U1, U3>,
        S3: Storage<R, U1, U3>,
    {
        let dir = &line_b - &line_a;
        let testx = &test_pt - &line_a;
        let mag_dir = (dir[0] * dir[0] + dir[1] * dir[1] + dir[2] * dir[2]).sqrt();
        let mag_testx = (testx[0] * testx[0] + testx[1] * testx[1] + testx[2] * testx[2]).sqrt();
        let scale = mag_dir / mag_testx;

        for j in 0..3 {
            approx::assert_abs_diff_eq!(testx[j] * scale, dir[j], epsilon = convert(1e-10));
        }
    }

    #[test]
    #[cfg(feature = "serde-serialize")]
    fn test_ray_bundle_serde() {
        let expected =
            RayBundle::<WorldFrame, _, _, _, _>::new_shared_plusz_direction(
                MatrixMN::<_, U2, U3>::new(
                    1.0, 2.0, 0.0, // ray 1
                    3.0, 4.0, 0.0, // ray 2
                ),
            );

        let buf = serde_json::to_string(&expected).unwrap();
        let actual: RayBundle<_, _, _, _, _> = serde_json::from_str(&buf).unwrap();
        assert!(expected == actual);
    }
}