1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/*!
[![Build Status](https://github.com/jaemk/cached/actions/workflows/build.yml/badge.svg)](https://github.com/jaemk/cached/actions/workflows/build.yml)
[![crates.io](https://img.shields.io/crates/v/cached.svg)](https://crates.io/crates/cached)
[![docs](https://docs.rs/cached/badge.svg)](https://docs.rs/cached)

> Caching structures and simplified function memoization

`cached` provides implementations of several caching structures as well as a handy macros
for defining memoized functions.

Memoized functions defined using [`#[cached]`](proc_macro::cached)/[`#[once]`](proc_macro::once)/[`#[io_cached]`](proc_macro::io_cached)/[`cached!`](crate::macros) macros are thread-safe with the backing
function-cache wrapped in a mutex/rwlock, or externally synchronized in the case of `#[io_cached]`.
By default, the function-cache is **not** locked for the duration of the function's execution, so initial (on an empty cache)
concurrent calls of long-running functions with the same arguments will each execute fully and each overwrite
the memoized value as they complete. This mirrors the behavior of Python's `functools.lru_cache`. To synchronize the execution and caching
of un-cached arguments, specify `#[cached(sync_writes = true)]` / `#[once(sync_writes = true)]` (not supported by `#[io_cached]`.

- See [`cached::stores` docs](https://docs.rs/cached/latest/cached/stores/index.html) cache stores available.
- See [`proc_macro`](https://docs.rs/cached/latest/cached/proc_macro/index.html) for more procedural macro examples.
- See [`macros`](https://docs.rs/cached/latest/cached/macros/index.html) for more declarative macro examples.

**Features**

- `default`: Include `proc_macro` and `ahash` features
- `proc_macro`: Include proc macros
- `ahash`: Enable the optional `ahash` hasher as default hashing algorithm.
- `async`: Include support for async functions and async cache stores
- `async_tokio_rt_multi_thread`: Enable `tokio`'s optional `rt-multi-thread` feature.
- `redis_store`: Include Redis cache store
- `redis_async_std`: Include async Redis support using `async-std` and `async-std` tls support, implies `redis_store` and `async`
- `redis_tokio`: Include async Redis support using `tokio` and `tokio` tls support, implies `redis_store` and `async`
- `redis_connection_manager`: Enable the optional `connection-manager` feature of `redis`. Any async redis caches created
                              will use a connection manager instead of a `MultiplexedConnection`
- `redis_ahash`: Enable the optional `ahash` feature of `redis`
- `disk_store`: Include disk cache store
- `wasm`: Enable WASM support. Note that this feature is incompatible with `tokio`'s multi-thread
   runtime (`async_tokio_rt_multi_thread`) and all Redis features (`redis_store`, `redis_async_std`, `redis_tokio`, `redis_ahash`)

The procedural macros (`#[cached]`, `#[once]`, `#[io_cached]`) offer more features, including async support.
See the [`proc_macro`](crate::proc_macro) and [`macros`](crate::macros) modules for more samples, and the
[`examples`](https://github.com/jaemk/cached/tree/master/examples) directory for runnable snippets.

Any custom cache that implements `cached::Cached`/`cached::CachedAsync` can be used with the `#[cached]`/`#[once]`/`cached!` macros in place of the built-ins.
Any custom cache that implements `cached::IOCached`/`cached::IOCachedAsync` can be used with the `#[io_cached]` macro.

----

The basic usage looks like:

```rust,no_run
use cached::proc_macro::cached;

/// Defines a function named `fib` that uses a cache implicitly named `FIB`.
/// By default, the cache will be the function's name in all caps.
/// The following line is equivalent to #[cached(name = "FIB", unbound)]
#[cached]
fn fib(n: u64) -> u64 {
    if n == 0 || n == 1 { return n }
    fib(n-1) + fib(n-2)
}
# pub fn main() { }
```

----

```rust,no_run
use std::thread::sleep;
use std::time::Duration;
use cached::proc_macro::cached;
use cached::SizedCache;

/// Use an explicit cache-type with a custom creation block and custom cache-key generating block
#[cached(
    ty = "SizedCache<String, usize>",
    create = "{ SizedCache::with_size(100) }",
    convert = r#"{ format!("{}{}", a, b) }"#
)]
fn keyed(a: &str, b: &str) -> usize {
    let size = a.len() + b.len();
    sleep(Duration::new(size as u64, 0));
    size
}
# pub fn main() { }
```

----

```rust,no_run
use cached::proc_macro::once;

/// Only cache the initial function call.
/// Function will be re-executed after the cache
/// expires (according to `time` seconds).
/// When no (or expired) cache, concurrent calls
/// will synchronize (`sync_writes`) so the function
/// is only executed once.
#[once(time=10, option = true, sync_writes = true)]
fn keyed(a: String) -> Option<usize> {
    if a == "a" {
        Some(a.len())
    } else {
        None
    }
}
# pub fn main() { }
```

----

```compile_fail
use cached::proc_macro::cached;

/// Cannot use sync_writes and result_fallback together
#[cached(
    result = true,
    time = 1,
    sync_writes = true,
    result_fallback = true
)]
fn doesnt_compile() -> Result<String, ()> {
    Ok("a".to_string())
}
```
----

```rust,no_run,ignore
use cached::proc_macro::io_cached;
use cached::AsyncRedisCache;
use thiserror::Error;

#[derive(Error, Debug, PartialEq, Clone)]
enum ExampleError {
    #[error("error with redis cache `{0}`")]
    RedisError(String),
}

/// Cache the results of an async function in redis. Cache
/// keys will be prefixed with `cache_redis_prefix`.
/// A `map_error` closure must be specified to convert any
/// redis cache errors into the same type of error returned
/// by your function. All `io_cached` functions must return `Result`s.
#[io_cached(
    map_error = r##"|e| ExampleError::RedisError(format!("{:?}", e))"##,
    ty = "AsyncRedisCache<u64, String>",
    create = r##" {
        AsyncRedisCache::new("cached_redis_prefix", 1)
            .set_refresh(true)
            .build()
            .await
            .expect("error building example redis cache")
    } "##
)]
async fn async_cached_sleep_secs(secs: u64) -> Result<String, ExampleError> {
    std::thread::sleep(std::time::Duration::from_secs(secs));
    Ok(secs.to_string())
}
```

----

```rust,no_run,ignore
use cached::proc_macro::io_cached;
use cached::DiskCache;
use thiserror::Error;

#[derive(Error, Debug, PartialEq, Clone)]
enum ExampleError {
    #[error("error with disk cache `{0}`")]
    DiskError(String),
}

/// Cache the results of a function on disk.
/// Cache files will be stored under the system cache dir
/// unless otherwise specified with `disk_dir` or the `create` argument.
/// A `map_error` closure must be specified to convert any
/// disk cache errors into the same type of error returned
/// by your function. All `io_cached` functions must return `Result`s.
#[io_cached(
    map_error = r##"|e| ExampleError::DiskError(format!("{:?}", e))"##,
    disk = true
)]
fn cached_sleep_secs(secs: u64) -> Result<String, ExampleError> {
    std::thread::sleep(std::time::Duration::from_secs(secs));
    Ok(secs.to_string())
}
```


Functions defined via macros will have their results cached using the
function's arguments as a key, a `convert` expression specified on a procedural macros,
or a `Key` block specified on a `cached_key!` declarative macro.

When a macro-defined function is called, the function's cache is first checked for an already
computed (and still valid) value before evaluating the function body.

Due to the requirements of storing arguments and return values in a global cache:

- Function return types:
  - For all store types, except Redis, must be owned and implement `Clone`
  - For the Redis store type, must be owned and implement `serde::Serialize + serde::DeserializeOwned`
- Function arguments:
  - For all store types, except Redis, must either be owned and implement `Hash + Eq + Clone`,
    the `cached_key!` macro is used with a `Key` block specifying key construction, or
    a `convert` expression is specified on a procedural macro to specify how to construct a key
    of a `Hash + Eq + Clone` type.
  - For the Redis store type, must either be owned and implement `Display`, or the `cached_key!` & `Key`
    or procedural macro & `convert` expression used to specify how to construct a key of a `Display` type.
- Arguments and return values will be `cloned` in the process of insertion and retrieval. Except for Redis
  where arguments are formatted into `Strings` and values are de/serialized.
- Macro-defined functions should not be used to produce side-effectual results!
- Macro-defined functions cannot live directly under `impl` blocks since macros expand to a
  `once_cell` initialization and one or more function definitions.
- Macro-defined functions cannot accept `Self` types as a parameter.


*/

#![cfg_attr(docsrs, feature(doc_cfg))]

#[doc(hidden)]
pub extern crate once_cell;

#[cfg(feature = "proc_macro")]
#[cfg_attr(docsrs, doc(cfg(feature = "proc_macro")))]
pub use proc_macro::Return;
#[cfg(any(feature = "redis_async_std", feature = "redis_tokio"))]
#[cfg_attr(
    docsrs,
    doc(cfg(any(feature = "redis_async_std", feature = "redis_tokio")))
)]
pub use stores::AsyncRedisCache;
pub use stores::{
    CanExpire, ExpiringValueCache, SizedCache, TimedCache, TimedSizedCache, UnboundCache,
};
#[cfg(feature = "disk_store")]
#[cfg_attr(docsrs, doc(cfg(feature = "disk_store")))]
pub use stores::{DiskCache, DiskCacheError};
#[cfg(feature = "redis_store")]
#[cfg_attr(docsrs, doc(cfg(feature = "redis_store")))]
pub use stores::{RedisCache, RedisCacheError};
#[cfg(feature = "async")]
#[cfg_attr(docsrs, doc(cfg(feature = "async")))]
use {async_trait::async_trait, futures::Future};

mod lru_list;
pub mod macros;
#[cfg(feature = "proc_macro")]
pub mod proc_macro;
pub mod stores;
#[doc(hidden)]
pub use instant;

#[cfg(feature = "async")]
#[doc(hidden)]
pub mod async_sync {
    pub use tokio::sync::Mutex;
    pub use tokio::sync::OnceCell;
    pub use tokio::sync::RwLock;
}

/// Cache operations
///
/// ```rust
/// use cached::{Cached, UnboundCache};
///
/// let mut cache: UnboundCache<String, String> = UnboundCache::new();
///
/// // When writing, keys and values are owned:
/// cache.cache_set("key".to_string(), "owned value".to_string());
///
/// // When reading, keys are only borrowed for lookup:
/// let borrowed_cache_value = cache.cache_get("key");
///
/// assert_eq!(borrowed_cache_value, Some(&"owned value".to_string()))
/// ```
pub trait Cached<K, V> {
    /// Attempt to retrieve a cached value
    ///
    /// ```rust
    /// # use cached::{Cached, UnboundCache};
    /// # let mut cache: UnboundCache<String, String> = UnboundCache::new();
    /// # cache.cache_set("key".to_string(), "owned value".to_string());
    /// // You can use borrowed data, or the data's borrowed type:
    /// let borrow_lookup_1 = cache.cache_get("key")
    ///     .map(String::clone);
    /// let borrow_lookup_2 = cache.cache_get(&"key".to_string())
    ///     .map(String::clone); // copy the values for test asserts
    ///
    /// # assert_eq!(borrow_lookup_1, borrow_lookup_2);
    /// ```
    fn cache_get<Q>(&mut self, k: &Q) -> Option<&V>
    where
        K: std::borrow::Borrow<Q>,
        Q: std::hash::Hash + Eq + ?Sized;

    /// Attempt to retrieve a cached value with mutable access
    ///
    /// ```rust
    /// # use cached::{Cached, UnboundCache};
    /// # let mut cache: UnboundCache<String, String> = UnboundCache::new();
    /// # cache.cache_set("key".to_string(), "owned value".to_string());
    /// // You can use borrowed data, or the data's borrowed type:
    /// let borrow_lookup_1 = cache.cache_get_mut("key")
    ///     .map(|value| value.clone());
    /// let borrow_lookup_2 = cache.cache_get_mut(&"key".to_string())
    ///     .map(|value| value.clone()); // copy the values for test asserts
    ///
    /// # assert_eq!(borrow_lookup_1, borrow_lookup_2);
    /// ```
    fn cache_get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
    where
        K: std::borrow::Borrow<Q>,
        Q: std::hash::Hash + Eq + ?Sized;

    /// Insert a key, value pair and return the previous value
    fn cache_set(&mut self, k: K, v: V) -> Option<V>;

    /// Get or insert a key, value pair
    fn cache_get_or_set_with<F: FnOnce() -> V>(&mut self, k: K, f: F) -> &mut V;

    /// Remove a cached value
    ///
    /// ```rust
    /// # use cached::{Cached, UnboundCache};
    /// # let mut cache: UnboundCache<String, String> = UnboundCache::new();
    /// # cache.cache_set("key1".to_string(), "owned value 1".to_string());
    /// # cache.cache_set("key2".to_string(), "owned value 2".to_string());
    /// // You can use borrowed data, or the data's borrowed type:
    /// let remove_1 = cache.cache_remove("key1");
    /// let remove_2 = cache.cache_remove(&"key2".to_string());
    ///
    /// # assert_eq!(remove_1, Some("owned value 1".to_string()));
    /// # assert_eq!(remove_2, Some("owned value 2".to_string()));
    /// ```
    fn cache_remove<Q>(&mut self, k: &Q) -> Option<V>
    where
        K: std::borrow::Borrow<Q>,
        Q: std::hash::Hash + Eq + ?Sized;

    /// Remove all cached values. Keeps the allocated memory for reuse.
    fn cache_clear(&mut self);

    /// Remove all cached values. Free memory and return to initial state
    fn cache_reset(&mut self);

    /// Reset misses/hits counters
    fn cache_reset_metrics(&mut self) {}

    /// Return the current cache size (number of elements)
    fn cache_size(&self) -> usize;

    /// Return the number of times a cached value was successfully retrieved
    fn cache_hits(&self) -> Option<u64> {
        None
    }

    /// Return the number of times a cached value was unable to be retrieved
    fn cache_misses(&self) -> Option<u64> {
        None
    }

    /// Return the cache capacity
    fn cache_capacity(&self) -> Option<usize> {
        None
    }

    /// Return the lifespan of cached values (time to eviction)
    fn cache_lifespan(&self) -> Option<u64> {
        None
    }

    /// Set the lifespan of cached values, returns the old value
    fn cache_set_lifespan(&mut self, _seconds: u64) -> Option<u64> {
        None
    }

    /// Remove the lifespan for cached values, returns the old value.
    ///
    /// For cache implementations that don't support retaining values indefinitely, this method is
    /// a no-op.
    fn cache_unset_lifespan(&mut self) -> Option<u64> {
        None
    }
}

/// Extra cache operations for types that implement `Clone`
pub trait CloneCached<K, V> {
    /// Attempt to retrieve a cached value and indicate whether that value was evicted.
    fn cache_get_expired<Q>(&mut self, _key: &Q) -> (Option<V>, bool)
    where
        K: std::borrow::Borrow<Q>,
        Q: std::hash::Hash + Eq + ?Sized;
}

#[cfg(feature = "async")]
#[cfg_attr(docsrs, doc(cfg(feature = "async")))]
#[async_trait]
pub trait CachedAsync<K, V> {
    async fn get_or_set_with<F, Fut>(&mut self, k: K, f: F) -> &mut V
    where
        V: Send,
        F: FnOnce() -> Fut + Send,
        Fut: Future<Output = V> + Send;

    async fn try_get_or_set_with<F, Fut, E>(&mut self, k: K, f: F) -> Result<&mut V, E>
    where
        V: Send,
        F: FnOnce() -> Fut + Send,
        Fut: Future<Output = Result<V, E>> + Send;
}

/// Cache operations on an io-connected store
pub trait IOCached<K, V> {
    type Error;

    /// Attempt to retrieve a cached value
    ///
    /// # Errors
    ///
    /// Should return `Self::Error` if the operation fails
    fn cache_get(&self, k: &K) -> Result<Option<V>, Self::Error>;

    /// Insert a key, value pair and return the previous value
    ///
    /// # Errors
    ///
    /// Should return `Self::Error` if the operation fails
    fn cache_set(&self, k: K, v: V) -> Result<Option<V>, Self::Error>;

    /// Remove a cached value
    ///
    /// # Errors
    ///
    /// Should return `Self::Error` if the operation fails
    fn cache_remove(&self, k: &K) -> Result<Option<V>, Self::Error>;

    /// Set the flag to control whether cache hits refresh the ttl of cached values, returns the old flag value
    fn cache_set_refresh(&mut self, refresh: bool) -> bool;

    /// Return the lifespan of cached values (time to eviction)
    fn cache_lifespan(&self) -> Option<u64> {
        None
    }

    /// Set the lifespan of cached values, returns the old value.
    fn cache_set_lifespan(&mut self, _seconds: u64) -> Option<u64> {
        None
    }

    /// Remove the lifespan for cached values, returns the old value.
    ///
    /// For cache implementations that don't support retaining values indefinitely, this method is
    /// a no-op.
    fn cache_unset_lifespan(&mut self) -> Option<u64> {
        None
    }
}

#[cfg(feature = "async")]
#[cfg_attr(docsrs, doc(cfg(feature = "async")))]
#[async_trait]
pub trait IOCachedAsync<K, V> {
    type Error;
    async fn cache_get(&self, k: &K) -> Result<Option<V>, Self::Error>;

    async fn cache_set(&self, k: K, v: V) -> Result<Option<V>, Self::Error>;

    /// Remove a cached value
    async fn cache_remove(&self, k: &K) -> Result<Option<V>, Self::Error>;

    /// Set the flag to control whether cache hits refresh the ttl of cached values, returns the old flag value
    fn cache_set_refresh(&mut self, refresh: bool) -> bool;

    /// Return the lifespan of cached values (time to eviction)
    fn cache_lifespan(&self) -> Option<u64> {
        None
    }

    /// Set the lifespan of cached values, returns the old value
    fn cache_set_lifespan(&mut self, _seconds: u64) -> Option<u64> {
        None
    }

    /// Remove the lifespan for cached values, returns the old value.
    ///
    /// For cache implementations that don't support retaining values indefinitely, this method is
    /// a no-op.
    fn cache_unset_lifespan(&mut self) -> Option<u64> {
        None
    }
}