bulletproofs 4.0.0

A pure-Rust implementation of Bulletproofs using Ristretto
Documentation
Constraint system proof protocol
================================

The `constraint_system` module contains an API for producing a proof that a set of secret values satisfies a given constraint system.

For more background on the constraint system proofs, see these two sections in the `notes` module:

* [Constraint system]../notes/index.html#constraint-system: description of the constraint system architecture.
* [Constraint system proof]../notes/index.html#constraint-system-proof: the math behind the constraint system proofs.

Prover’s algorithm
------------------

The protocol begins with the prover computing commitments to the secret values \\(\mathbf{v}\\) and adding all commitments to the protocol transcript.

\\[
V_i \gets \operatorname{Com}(v_i, {\widetilde{v}\_i}) = v\_i \cdot B + {\widetilde{v}\_i} \cdot {\widetilde{B}}
\\] where each \\(\widetilde{v}\_i\\) is sampled randomly.

The prover then [builds constraints](#building-constraints) in two phases.

In the first phase, the prover allocates necessary multiplication gates on the fly, fills in weights \\(\mathbf{W}\_L',\mathbf{W}\_R',\mathbf{W}\_O',\mathbf{W}\_V'\\), and assigns values to the left, right and output wires
of the multiplication gates (\\(\mathbf{a}\_L', \mathbf{a}\_R', \mathbf{a}\_O'\\)) without using the challenge values.

Once \\(n'\\) multiplication gates are assigned, the prover commits to them via vector Pedersen commitments:

\\[
\begin{aligned}
\tilde{a}' \\;&{\xleftarrow{\\$}}\\; \mathbb Z\_p \\\\
\tilde{o}' \\;&{\xleftarrow{\\$}}\\; \mathbb Z\_p \\\\
A_I'          &\gets \widetilde{B} \cdot \tilde{a}' + \langle \mathbf{G}' , \mathbf{a}\_L' \rangle + \langle \mathbf{H}', \mathbf{a}\_R' \rangle \\\\
A_O'          &\gets \widetilde{B} \cdot \tilde{o}' + \langle \mathbf{G}' , \mathbf{a}\_O' \rangle \\\\
\end{aligned}
\\]

The prover also computes blinding factors \\(\mathbf{s}\_L', \mathbf{s}\_R'\\)
for the left and right multiplication values and commits to them:

\\[
\begin{aligned}
\mathbf{s}\_L' \\; &{\xleftarrow{\\$}}\\; {\mathbb Z\_p}^{n'} \\\\
\mathbf{s}\_R' \\; &{\xleftarrow{\\$}}\\; {\mathbb Z\_p}^{n'} \\\\
\tilde{s}' \\;     &{\xleftarrow{\\$}}\\; \mathbb Z\_p \\\\
S'                 &\gets \widetilde{B} \cdot \tilde{s}' + \langle \mathbf{G}', \mathbf{s}\_L' \rangle + \langle \mathbf{H}', \mathbf{s}\_R' \rangle
\end{aligned}
\\]

The prover adds \\(A_I'\\), \\(A_O'\\) and \\(S'\\) to the protocol transcript.

In the second phase, the prover is allowed to use challenge values when allocating multiplication gates (\\(\mathbf{a}\_{L}'', \mathbf{a}\_{R}'', \mathbf{a}\_{O}''\\)) and computing weights \\(\mathbf{W}\_L'',\mathbf{W}\_R'',\mathbf{W}\_O'',\mathbf{W}\_V''\\).

When additional \\(n''\\) multiplication gates are assigned, the prover commits to them via vector Pedersen commitments, along with the corresponding blinding factors \\(\mathbf{s}\_L'', \mathbf{s}\_R''\\):

\\[
\begin{aligned}
\tilde{a}''        \\;&{\xleftarrow{\\$}}\\; \mathbb Z\_p \\\\
\tilde{o}''        \\;&{\xleftarrow{\\$}}\\; \mathbb Z\_p \\\\
A_I''                 &\gets \widetilde{B} \cdot \tilde{a}'' + \langle \mathbf{G}'' , \mathbf{a}\_L'' \rangle + \langle \mathbf{H}'', \mathbf{a}\_R'' \rangle \\\\
A_O''                 &\gets \widetilde{B} \cdot \tilde{o}'' + \langle \mathbf{G}'' , \mathbf{a}\_O'' \rangle \\\\
\mathbf{s}\_L''   \\; &{\xleftarrow{\\$}}\\; {\mathbb Z\_p}^{n''} \\\\
\mathbf{s}\_R''   \\; &{\xleftarrow{\\$}}\\; {\mathbb Z\_p}^{n''} \\\\
\tilde{s}'' \\;       &{\xleftarrow{\\$}}\\; \mathbb Z\_p \\\\
S''                   &\gets \widetilde{B} \cdot \tilde{s}'' + \langle \mathbf{G}'' , \mathbf{s}\_L'' \rangle + \langle \mathbf{H}'', \mathbf{s}\_R'' \rangle
\end{aligned}
\\]

The prover adds \\(A_I''\\), \\(A_O''\\) and \\(S''\\) to the protocol transcript
and obtains challenge scalars \\(y,z \in {\mathbb Z\_p}\\) from the transcript.

The prover then flattens the constraints using \\(q\\) powers of challenge \\(z\\):

\\[
\begin{aligned}
\mathbf{w}\_L &\gets z \mathbf{z}^q \cdot (\mathbf{W}\_L' || \mathbf{W}\_L''), \\\\
\mathbf{w}\_R &\gets z \mathbf{z}^q \cdot (\mathbf{W}\_R' || \mathbf{W}\_R''), \\\\
\mathbf{w}\_O &\gets z \mathbf{z}^q \cdot (\mathbf{W}\_O' || \mathbf{W}\_O''), \\\\
\mathbf{w}\_V &\gets z \mathbf{z}^q \cdot (\mathbf{W}\_V' || \mathbf{W}\_V''),
\end{aligned}
\\]
where each of \\(\mathbf{w}\_L, \mathbf{w}\_R, \mathbf{w}\_O\\) has length \\(n = n' + n''\\) and \\(\mathbf{w}\_V\\) has length \\(m\\).

The prover then constructs the blinded polynomials and their inner product:

\\[
\begin{aligned}
  {\mathbf{l}}(x)  &\gets (\mathbf{a}\_L' || \mathbf{a}\_L'') \cdot x + (\mathbf{s}\_L' || \mathbf{s}\_L'') \cdot x^3 + \mathbf{y}^{-n} \circ \mathbf{w}\_R \cdot x + (\mathbf{a}\_O' || \mathbf{a}\_O'') \cdot x^2 \\\\
  {\mathbf{r}}(x)  &\gets \mathbf{y}^n \circ (\mathbf{a}\_R' || \mathbf{a}\_R'') \cdot x + \mathbf{y}^n \circ (\mathbf{s}\_R' || \mathbf{s}\_R'') \cdot x^3 + \mathbf{w}\_L \cdot x - \mathbf{y}^n + \mathbf{w}\_O \\\\
  t(x)             &\gets {\langle {\mathbf{l}}(x), {\mathbf{r}}(x) \rangle}
\end{aligned}
\\]

The prover generates blinding factors for terms \\(t\_1, t\_3, t\_4, t\_5, t\_6\\) and creates Pedersen commitments to them
(term \\(t\_0\\) is known to be zero and term \\(t\_2\\) is being proven):

\\[
\begin{aligned}
  &\tilde{t}\_1, \tilde{t}\_3, \tilde{t}\_4, \tilde{t}\_5, \tilde{t}\_6 \\;{\xleftarrow{\\$}}\\; \mathbb Z\_p \\\\
  &T_i \gets \operatorname{Com}(t_i, {\tilde{t}\_i}) = t\_i \cdot B + {\tilde{t}\_i} \cdot {\widetilde{B}} \\\\
\end{aligned}
\\]

The prover adds \\(T_1, T_3, T_4, T_5, T_6\\) to the protocol transcript
and obtains the challenge scalars \\(u,x \in {\mathbb Z\_p}\\) from the transcript.

Using the concrete values \\(u, x\\), the prover computes
the synthetic blinding factors \\({\tilde{t}}(x)\\) and \\(\tilde{e}\\):

\\[
\begin{aligned}
  \tilde{t}\_2    &\gets \langle \mathbf{w}\_V, \tilde{\mathbf{v}} \rangle \\\\
  {\tilde{t}}(x)  &\gets \sum\_{i = 1}^{6} x^i \tilde{t}\_{i} \\\\
  {\tilde{e}}     &\gets (\tilde{a}' + u \tilde{a}'') \cdot x + (\tilde{o}' + u \tilde{o}'') \cdot x^2 + (\tilde{s}' + u \tilde{s}'') \cdot x^3 \\\\
\end{aligned}
\\]

The prover adds \\(t(x), {\tilde{t}}(x), {\tilde{e}}\\) to the protocol transcript, obtains a challenge scalar \\(w \in {\mathbb Z\_p}\\), and uses it to create a point \\(Q\\):

\\[
	Q \gets  w \cdot B
\\]

The prover evaluates polynomials \\(\mathbf{l}(x), \mathbf{r}(x)\\) and
[pads them to the next power of two](#padding-mathbflx-and-mathbfrx-for-the-inner-product-proof) \\(n \rightarrow n^{+}\\):

\\[
\begin{aligned}
             n^{+} &\gets 2^{\lceil \log_2 n \rceil} \\\\
\mathbf{l}^{+}     &\gets \mathbf{l}(x) \hspace{0.1cm} || \hspace{0.1cm} \mathbf{0} \\\\
\mathbf{r}^{+}     &\gets \mathbf{r}(x) \hspace{0.1cm} || \hspace{0.1cm} [-y^n,...,-y^{n^{+}-1}]
\end{aligned}
\\]

The prover transmutes generators using challenges \\(y\\) and \\(u\\):

\\[
\begin{aligned}
  \hat{\mathbf{G}} &\gets \mathbf{G}' || (u \cdot \mathbf{G}'') \\\\
  \hat{\mathbf{H}} &\gets \mathbf{y}^{-n} \circ \big( \mathbf{H}' || (u \cdot \mathbf{H}'') \big) \\\\
\end{aligned}
\\]

The prover also takes a larger slice of the generators \\(\mathbf{G}, \mathbf{H}\\):

\\[
\begin{aligned}
\hat{\mathbf{G}}^{+}  &\gets \hat{\mathbf{G}}   \hspace{0.1cm} || \hspace{0.1cm} u \cdot [G_n,...,G_{n^{+}-1}] \\\\
\hat{\mathbf{H}}^{+}  &\gets \hat{\mathbf{H}}   \hspace{0.1cm} || \hspace{0.1cm} u \cdot [y^{-n} H_n,..., y^{-(n^{+}-1)} H_{n^{+}-1}] \\\\
\end{aligned}
\\]

Finally, the prover performs the [inner product argument](../inner_product_proof/index.html) to prove the relation:
\\[
\operatorname{PK}\left\\{
  (\hat{\mathbf{G}}^{+}, \hat{\mathbf{H}}^{+} \in {\mathbb G}^{n^{+}}, P', Q \in {\mathbb G}; \mathbf{l}^{+}, \mathbf{r}^{+} \in {\mathbb Z\_p}^{n^{+}})
   : P' = {\langle \mathbf{l}^{+}, \hat{\mathbf{G}}^{+} \rangle} + {\langle \mathbf{r}^{+}, \hat{\mathbf{H}}^{+} \rangle} + {\langle \mathbf{l}^{+}, \mathbf{r}^{+} \rangle} Q
\right\\}
\\]

The result of the inner product proof is a list of \\(2k\\) points and \\(2\\) scalars, where \\(k = \lceil \log_2(n) \rceil\\): \\(\\{L\_k, R\_k, \\dots, L\_1, R\_1, a, b\\}\\).

The complete proof consists of \\(16+2k\\) 32-byte elements:
\\[
  \\{A\_I', A\_O', S', A\_I'', A\_O'', S'', T\_1, T\_3, T\_4, T\_5, T\_6, t(x), {\tilde{t}}(x), \tilde{e}, L\_k, R\_k, \\dots, L\_1, R\_1, a, b\\}
\\]



Verifier’s algorithm
--------------------

The input to the verifier is the aggregated proof, which contains the \\(m\\) value commitments \\(V_{(j)}\\),
and \\(32 \cdot (16 + 2 k)\\) bytes of the proof data where \\(k = \lceil \log_2(n) \rceil\\) and \\(n\\) is a number of [multiplication gates](#multiplication-gates):

\\[
  \\{A\_I', A\_O', S', A\_I'', A\_O'', S'', T\_1, T\_3, T\_4, T\_5, T\_6, t(x), {\tilde{t}}(x), \tilde{e}, L\_k, R\_k, \\dots, L\_1, R\_1, a, b\\}
\\]

The verifier starts by adding all value commitments \\(V_i\\) to the protocol transcript.

The verifier then [builds constraints](#building-constraints) in two phases.

In the first phase, the verifier allocates \\(n'\\) multiplication gates and the first set of constraints without using challenges.

Then, the verifier uses the Fiat-Shamir transform to generate challenges required by the gadgets
by adding the intermediate commitments \\(A_I', A_O', S'\\) to the protocol transcript.

In the second phase, the verifier allocates additional \\(n''\\) multiplication gates and the second set of constraints,
providing necessary challenges to the gadgets that form the constraint system.

The verifier obtains more challenges by adding the appropriate data sequentially to the protocol transcript:

1. \\(A_I'', A_O'', S''\\) are added to obtain challenge scalars \\(y,z \in {\mathbb Z\_p}\\),
2. \\(T_1, T_3, T_4, T_5, T_6\\) are added to obtain a challenge scalars \\(u,x \in {\mathbb Z\_p}\\),
3. \\(t(x), {\tilde{t}}(x), \tilde{e}\\) are added to obtain a challenge \\(w \in {\mathbb Z\_p}\\).

The verifier flattens constraints:

\\[
\begin{aligned}
\mathbf{w}\_L &\gets z \mathbf{z}^q \cdot \mathbf{W}\_L, \\\\
\mathbf{w}\_R &\gets z \mathbf{z}^q \cdot \mathbf{W}\_R, \\\\
\mathbf{w}\_O &\gets z \mathbf{z}^q \cdot \mathbf{W}\_O, \\\\
\mathbf{w}\_V &\gets z \mathbf{z}^q \cdot \mathbf{W}\_V, \\\\
         w\_c &\gets \langle z \mathbf{z}^q, \mathbf{c} \rangle,
\end{aligned}
\\]
where each of \\(\mathbf{w}\_L, \mathbf{w}\_R, \mathbf{w}\_O\\) has length \\(n\\) and \\(\mathbf{w}\_V\\) has length \\(m\\).

The verifier [pads the proof data](#padding-mathbflx-and-mathbfrx-for-the-inner-product-proof)
by taking a larger slice of the generators \\(\mathbf{G},\mathbf{H}\\) and more powers of challenges \\(y\\) up to \\((n^{+}-1)\\):

\\[
\begin{aligned}
              n^{+} &\gets 2^{\lceil \log_2 n \rceil} \\\\
\mathbf{G}^{+}      &\gets \mathbf{G}   \hspace{0.1cm} || \hspace{0.1cm} [G_n,...,G_{n^{+}-1}] \\\\
\mathbf{H}^{+}      &\gets \mathbf{H}   \hspace{0.1cm} || \hspace{0.1cm} [H_n,...,H_{n^{+}-1}] \\\\
\mathbf{y}^{n^{+}}  &\gets \mathbf{y}^n \hspace{0.1cm} || \hspace{0.1cm} [y^n,...,y^{n^{+}-1}] \\\\
\end{aligned}
\\]

The verifier computes the following scalars for the [inner product argument](../inner_product_proof/index.html):

\\[
	\\{u\_{1}^{2}, \dots, u\_{k}^{2}, u\_{1}^{-2}, \dots, u\_{k}^{-2}, s_0, \dots, s_{n^{+}-1}\\}
\\]

The goal of the verifier is to check two equations.

**First**, verify the second term of the polynomial \\(t(x)\\) (see [notes](#proving-that-t_2-is-correct)):

\\[
\begin{aligned}
t(x) B + {\tilde{t}}(x) {\widetilde{B}}
&\stackrel{?}{=}
x^2 \langle \mathbf{w}\_V, \mathbf{V} \rangle + x^2 \big(w\_c + \delta(y,z)\big) B + \sum\_{i = 1,3,4,5,6} x^i T\_{i},\\\\
\delta(y, z) &= \langle \mathbf{y}^{-n} \circ \mathbf{w}\_R, \mathbf{w}\_L \rangle \\\\
\end{aligned}
\\]

If we rewrite the check as a comparison with the identity point, we get:
\\[
0 \stackrel{?}{=} x^2 \langle \mathbf{w}\_V, \mathbf{V} \rangle + x^2 \big(w\_c + \delta(y,z)\big) B + \sum\_{i = 1,3,4,5,6} x^i T\_{i} - t(x) B - {\tilde{t}}(x) {\widetilde{B}}
\\]

**Second**, verify the inner product argument for the vectors \\(\mathbf{l}(x), \mathbf{r}(x)\\) that form the \\(t(x)\\) (see [inner-product protocol](../inner_product_proof/index.html#verification-equation))
  
\\[
P' \overset ? = {\langle a \cdot \mathbf{s}, \hat{\mathbf{G}}^{+} \rangle} + {\langle b/\mathbf{s}, \hat{\mathbf{H}}^{+} \rangle} + abQ - \sum\_{j=1}^{k} \left( L\_{j} u\_{j}^{2} + u\_{j}^{-2} R\_{j} \right),
\\]
where
\\[
\begin{aligned}
   \hat{\mathbf{G}}^{+}  &= \mathbf{G}' \hspace{0.1cm} || \hspace{0.1cm} u \cdot \mathbf{G}'' \hspace{0.1cm} || \hspace{0.1cm} u \cdot [G_n,...,G_{n^{+}-1}] \\\\
   \hat{\mathbf{H}}^{+}  &= \mathbf{y}^{-n^{+}} \circ \big( \mathbf{H}' \hspace{0.1cm} || \hspace{0.1cm} u \cdot \mathbf{H}'' \hspace{0.1cm} || \hspace{0.1cm} u \cdot [H_n,...,H_{n^{+}-1}]\big) \\\\
\end{aligned}
\\]

Rewriting as a comparison with the identity point and expanding \\(Q = wB\\) and \\(P' = P^{+} + t(x) wB\\) as [needed for transition to the inner-product protocol](../notes/index.html#inner-product-proof):

\\[
0 \overset ? = P^{+} + t(x) wB - {\langle a \cdot \mathbf{s}, \hat{\mathbf{G}}^{+} \rangle} - {\langle b/\mathbf{s}, \hat{\mathbf{H}}^{+} \rangle} - abwB + \sum\_{j=1}^{k} \left( L\_{j} u\_{j}^{2} + u\_{j}^{-2} R\_{j} \right),
\\]
where the [definition](#proving-that-mathbflx-mathbfrx-are-correct) of \\(P^{+}\\) is:

\\[
\begin{aligned}
  P^{+}   = &-{\widetilde{e}} {\widetilde{B}} + x \cdot (A_I' + u \cdot A_I'') + x^2 \cdot (A_O' + u \cdot A_O'') \\\\
            &-\langle \mathbf{1}, \mathbf{H}' \rangle - u \cdot \langle \mathbf{1}, {\mathbf{H}''} \rangle - u \cdot [H_n,...,H_{n^{+}-1}]\\\\
            &+x \cdot \langle \mathbf{w}\_L,  \hat{\mathbf{H}} \rangle + x \cdot \langle \mathbf{w}\_R,  \hat{\mathbf{G}} \rangle + \langle \mathbf{w}\_O,  \hat{\mathbf{H}} \rangle +
            x^3 \cdot (S' + u \cdot S'')
\end{aligned}
\\]

The verifier combines two equations in one by sampling a random factor \\(r \\; {\xleftarrow{\\$}} \\; {\mathbb Z\_p}\\),
multiplying the first equation by \\(r\\), and adding it with the second equation.

Finally, verifier groups all scalars by each point and performs a single multiscalar multiplication:

\\[
\begin{aligned}
0 \quad \stackrel{?}{=} & \quad x       \cdot A\_I' \\\\
                      + & \quad x^2     \cdot A\_O' \\\\
                      + & \quad x^3     \cdot S' \\\\
                      + & \quad u \cdot x     \cdot A\_I'' \\\\
                      + & \quad u \cdot x^2   \cdot A\_O'' \\\\
                      + & \quad u \cdot x^3   \cdot S'' \\\\
                      + & \quad \langle r \cdot x^2 \cdot \mathbf{w}\_V, \mathbf{V} \rangle \\\\
                      + & \quad \sum\_{i = 1,3,4,5,6} r \cdot x^i \cdot T\_{i} \\\\
                      + & \quad \Big(w \cdot \big(t(x) - a \cdot b\big) + r \cdot \big(x^2 \cdot (w\_c + \delta(y,z)) - t(x)\big) \Big) \cdot B \\\\
                      + & \quad (-{\widetilde{e}} - r \cdot {\tilde{t}}(x)) \cdot \widetilde{B} \\\\
                      + & \quad {\langle x \cdot \mathbf{y}^{-n^{+}}\_{[0:n']} \circ \mathbf{w}\_R' - a \cdot \mathbf{s}\_{[0:n']}, \mathbf{G}^{+}\_{[0:n']} \rangle}\\\\
                      + & \quad {\langle u \cdot \big( x \cdot \mathbf{y}^{-n^{+}}\_{[n':n]} \circ \mathbf{w}\_R'' - a \cdot \mathbf{s}\_{[n':n]} \big), \mathbf{G}^{+}\_{[n':n]} \rangle}\\\\
                      + & \quad {\langle -u \cdot a \cdot \mathbf{s}\_{[n:n^{+}]}, \mathbf{G}^{+}\_{[n:n^{+}]} \rangle}\\\\
                      + & \quad {\langle -\mathbf{1} + \mathbf{y}^{-n^{+}}\_{[0:n']} \circ (x \mathbf{w}\_L' + \mathbf{w}\_O' - b /\mathbf{s}\_{[0:n']} ), \mathbf{H}^{+}\_{[0:n']} \rangle}\\\\
                      + & \quad {\langle u \cdot \big(-\mathbf{1} + \mathbf{y}^{-n^{+}}\_{[n':n]} \circ (x \mathbf{w}\_L'' + \mathbf{w}\_O'' - b /\mathbf{s}\_{[n':n]} ) \big), \mathbf{H}^{+}\_{[n':n]} \rangle}\\\\
                      + & \quad {\langle u \cdot \big(-\mathbf{1} + \mathbf{y}^{-n^{+}}\_{[n:n^{+}]} \circ ( -b /\mathbf{s}\_{[n:n^{+}]} ) \big), \mathbf{H}^{+}\_{[n:n^{+}]} \rangle}\\\\
                      + & \quad {\langle [u_{1}^2,    \dots, u_{k}^2    ], [L_1, \dots, L_{k}] \rangle}\\\\
                      + & \quad {\langle [u_{1}^{-2}, \dots, u_{k}^{-2} ], [R_1, \dots, R_{k}] \rangle}
\end{aligned}
\\] where \\(1/{\mathbf{s}}\\) are inverses of \\(\mathbf{s}\\), computed as a [reversed list](../inner_product_proof/index.html#verifiers-algorithm) of \\(\mathbf{s}\\).