1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
//! bitonic sort algorithm.
//!
//! This sort works only if the length of the array is 2^N.
//!
//! **O(Nlog₂N)**

/// Sort in ascending order using a bitonic sort algorithm.
///
/// ```rust
/// use buldak::bitonic;
///
/// let mut nums = [1, 4, 2, 3, 5, 111, 234, 21];
/// bitonic::sort(&mut nums);
/// assert_eq!(nums, [1, 2, 3, 4, 5, 21, 111, 234]);
/// ```
pub fn sort<T>(array: &mut [T]) -> Result<(), String>
where
    T: std::cmp::Ord,
{
    sort_by(array, |l, r| l.cmp(r))
}

/// Sort in descending order using a bitonic sort algorithm.
///
/// ```rust
/// use buldak::bitonic;
///
/// let mut nums = [1, 4, 2, 3, 5, 111, 234, 21];
/// bitonic::sort_reverse(&mut nums);
/// assert_eq!(nums, [234, 111, 21, 5, 4, 3, 2, 1]);
/// ```
pub fn sort_reverse<T>(array: &mut [T]) -> Result<(), String>
where
    T: std::cmp::Ord,
{
    sort_by(array, |l, r| l.cmp(r).reverse())
}

/// It takes a comparator function to determine the order,
/// and sorts it using a bitonic sort algorithm.
///
/// ```rust
/// use buldak::bitonic;
///
/// let mut nums = [1, 4, 2, 3, 5, 111, 234, 21];
/// bitonic::sort_by(&mut nums, |l, r| l.cmp(r));
/// assert_eq!(nums, [1, 2, 3, 4, 5, 21, 111, 234]);
/// ```
pub fn sort_by<T, F>(array: &mut [T], compare: F) -> Result<(), String>
where
    T: std::cmp::Ord,
    F: Fn(&T, &T) -> std::cmp::Ordering + std::clone::Clone,
{
    _bitonic_sort_impl(array, compare)
}

fn _bitonic_sort_impl<T, F>(array: &mut [T], compare: F) -> Result<(), String>
where
    T: std::cmp::Ord,
    F: Fn(&T, &T) -> std::cmp::Ordering + std::clone::Clone,
{
    let len = array.len() as isize;

    if len != (len & -len) {
        Err("This sort works only if the length of the array is 2^N.".to_string())
    } else {
        _bitonic_sort_recursive(array, 0, array.len(), true, compare);
        Ok(())
    }
}

fn _bitonic_sort_recursive<T, F>(array: &mut [T], low: usize, count: usize, asc: bool, compare: F)
where
    T: std::cmp::Ord,
    F: Fn(&T, &T) -> std::cmp::Ordering + std::clone::Clone,
{
    if count > 1 {
        let middle = count / 2;

        _bitonic_sort_recursive(array, low, middle, true, compare.clone());
        _bitonic_sort_recursive(array, low + middle, middle, false, compare.clone());

        _bitonic_merge(array, low, count, asc, compare);
    }
}

mod utils;

fn _bitonic_merge<T, F>(array: &mut [T], low: usize, count: usize, asc: bool, compare: F)
where
    T: std::cmp::Ord,
    F: Fn(&T, &T) -> std::cmp::Ordering + std::clone::Clone,
{
    if count > 1 {
        let middle = count / 2;

        for i in low..(low + middle) {
            _compare_swap(array, i, i + middle, asc, compare.clone());
        }

        _bitonic_merge(array, low, middle, asc, compare.clone());
        _bitonic_merge(array, low + middle, middle, asc, compare.clone());
    }
}

fn _compare_swap<T, F>(array: &mut [T], i: usize, j: usize, asc: bool, compare: F)
where
    T: std::cmp::Ord,
    F: Fn(&T, &T) -> std::cmp::Ordering + std::clone::Clone,
{
    if asc == (compare(&array[i], &array[j]) == std::cmp::Ordering::Greater) {
        utils::swap(array, i, j);
    }
}

#[cfg(test)]
mod tests {
    #[test]
    fn sort_ascending() {
        struct TestCase {
            input: Vec<i32>,
            expected: Vec<i32>,
        }

        let test_cases = vec![TestCase {
            input: vec![1, 4, 2, 3, 5, 111, 234, 21],
            expected: vec![1, 2, 3, 4, 5, 21, 111, 234],
        }];

        for case in test_cases {
            let mut actual = case.input.clone();
            super::sort(&mut actual).unwrap();
            assert_eq!(actual, case.expected);
        }
    }

    #[test]
    fn sort_descending() {
        struct TestCase {
            input: Vec<i32>,
            expected: Vec<i32>,
        }

        let test_cases = vec![TestCase {
            input: vec![1, 4, 2, 3, 5, 234, 21, 13],
            expected: vec![234, 21, 13, 5, 4, 3, 2, 1],
        }];

        for case in test_cases {
            let mut actual = case.input.clone();
            super::sort_reverse(&mut actual).unwrap();
            assert_eq!(actual, case.expected);
        }
    }
}