1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
//! A UTF-16–encoded, reference counted, immutable string.
//!
//! This module contains the [`JsString`] type, the [`js_string`][crate::js_string] macro and the
//! [`utf16`] macro.
//!
//! The [`js_string`][crate::js_string] macro is used when you need to create a new [`JsString`],
//! and the [`utf16`] macro is used for const conversions of string literals to UTF-16.

// Required per unsafe code standards to ensure every unsafe usage is properly documented.
// - `unsafe_op_in_unsafe_fn` will be warn-by-default in edition 2024:
//   https://github.com/rust-lang/rust/issues/71668#issuecomment-1189396860
// - `undocumented_unsafe_blocks` and `missing_safety_doc` requires a `Safety:` section in the
//   comment or doc of the unsafe block or function, respectively.
#![deny(
    unsafe_op_in_unsafe_fn,
    clippy::undocumented_unsafe_blocks,
    clippy::missing_safety_doc
)]
// Remove when/if https://github.com/rust-lang/rust/issues/95228 stabilizes.
// Right now this allows us to use the stable polyfill from the `sptr` crate, which uses
// the same names from the unstable functions of the `std::ptr` module.
#![allow(unstable_name_collisions)]

pub(crate) mod common;

use crate::{
    builtins::string::is_trimmable_whitespace,
    tagged::{Tagged, UnwrappedTagged},
    JsBigInt,
};
use boa_gc::{Finalize, Trace};
pub use boa_macros::utf16;

use std::{
    alloc::{alloc, dealloc, Layout},
    borrow::Borrow,
    cell::Cell,
    convert::Infallible,
    hash::{Hash, Hasher},
    iter::Peekable,
    ops::{Deref, Index},
    process::abort,
    ptr::{self, addr_of, addr_of_mut, NonNull},
    slice::SliceIndex,
    str::FromStr,
};

use self::common::StaticJsStrings;

fn alloc_overflow() -> ! {
    panic!("detected overflow during string allocation")
}

/// Utility macro to create a [`JsString`].
///
/// # Examples
///
/// You can call the macro without arguments to create an empty `JsString`:
///
/// ```
/// use boa_engine::js_string;
/// use boa_engine::string::utf16;
///
/// let empty_str = js_string!();
/// assert!(empty_str.is_empty());
/// ```
///
///
/// You can create a `JsString` from a string literal, which completely skips the runtime
/// conversion from [`&str`] to <code>[&\[u16\]][slice]</code>:
///
/// ```
/// # use boa_engine::js_string;
/// # use boa_engine::string::utf16;
/// let hw = js_string!("Hello, world!");
/// assert_eq!(&hw, utf16!("Hello, world!"));
/// ```
///
/// Any `&[u16]` slice is a valid `JsString`, including unpaired surrogates:
///
/// ```
/// # use boa_engine::js_string;
/// let array = js_string!(&[0xD8AFu16, 0x00A0, 0xD8FF, 0x00F0]);
/// ```
///
/// You can also pass it any number of `&[u16]` as arguments to create a new `JsString` with
/// the concatenation of every slice:
///
/// ```
/// # use boa_engine::js_string;
/// # use boa_engine::string::utf16;
/// const NAME: &[u16] = utf16!("human! ");
/// let greeting = js_string!("Hello, ");
/// let msg = js_string!(&greeting, &NAME, utf16!("Nice to meet you!"));
///
/// assert_eq!(&msg, utf16!("Hello, human! Nice to meet you!"));
/// ```
#[macro_export]
macro_rules! js_string {
    () => {
        $crate::JsString::default()
    };
    ($s:literal) => {
        $crate::JsString::from($crate::string::utf16!($s))
    };
    ($s:expr) => {
        $crate::JsString::from($s)
    };
    ( $x:expr, $y:expr ) => {
        $crate::JsString::concat($x, $y)
    };
    ( $( $s:expr ),+ ) => {
        $crate::JsString::concat_array(&[ $( $s ),+ ])
    };
}

/// Represents a Unicode codepoint within a [`JsString`], which could be a valid
/// '[Unicode scalar value]', or an unpaired surrogate.
///
/// [Unicode scalar value]: https://www.unicode.org/glossary/#unicode_scalar_value
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum CodePoint {
    /// A valid Unicode scalar value.
    Unicode(char),

    /// An unpaired surrogate.
    UnpairedSurrogate(u16),
}

impl CodePoint {
    /// Get the number of UTF-16 code units needed to encode this code point.
    #[must_use]
    pub const fn code_unit_count(self) -> usize {
        match self {
            Self::Unicode(c) => c.len_utf16(),
            Self::UnpairedSurrogate(_) => 1,
        }
    }

    /// Convert the code point to its [`u32`] representation.
    #[must_use]
    pub fn as_u32(self) -> u32 {
        match self {
            Self::Unicode(c) => u32::from(c),
            Self::UnpairedSurrogate(surr) => u32::from(surr),
        }
    }

    /// If the code point represents a valid 'Unicode scalar value', returns its [`char`]
    /// representation, otherwise returns [`None`] on unpaired surrogates.
    #[must_use]
    pub const fn as_char(self) -> Option<char> {
        match self {
            Self::Unicode(c) => Some(c),
            Self::UnpairedSurrogate(_) => None,
        }
    }

    /// Encodes this code point as UTF-16 into the provided u16 buffer, and then returns the subslice
    /// of the buffer that contains the encoded character.
    ///
    /// # Panics
    ///
    /// Panics if the buffer is not large enough. A buffer of length 2 is large enough to encode any
    /// code point.
    pub fn encode_utf16(self, dst: &mut [u16]) -> &mut [u16] {
        match self {
            Self::Unicode(c) => c.encode_utf16(dst),
            Self::UnpairedSurrogate(surr) => {
                dst[0] = surr;
                &mut dst[0..=0]
            }
        }
    }
}

/// The raw representation of a [`JsString`] in the heap.
#[repr(C)]
struct RawJsString {
    /// The UTF-16 length.
    len: usize,

    /// The number of references to the string.
    ///
    /// When this reaches `0` the string is deallocated.
    refcount: Cell<usize>,

    /// An empty array which is used to get the offset of string data.
    data: [u16; 0],
}

const DATA_OFFSET: usize = std::mem::size_of::<RawJsString>();

/// A UTF-16–encoded, reference counted, immutable string.
///
/// This is pretty similar to a <code>[Rc][std::rc::Rc]\<[\[u16\]][slice]\></code>, but without the
/// length metadata associated with the `Rc` fat pointer. Instead, the length of every string is
/// stored on the heap, along with its reference counter and its data.
///
/// We define some commonly used string constants in an interner. For these strings, we don't allocate
/// memory on the heap to reduce the overhead of memory allocation and reference counting.
///
/// # Deref
///
/// [`JsString`] implements <code>[Deref]<Target = \[u16\]></code>, inheriting all of
/// <code>\[u16\]</code>'s methods.
#[derive(Trace, Finalize)]
// Safety: `JsString` does not contain any objects which needs to be traced, so this is safe.
#[boa_gc(unsafe_empty_trace)]
pub struct JsString {
    ptr: Tagged<RawJsString>,
}

// JsString should always be pointer sized.
sa::assert_eq_size!(JsString, *const ());

impl JsString {
    /// Obtains the underlying [`&[u16]`][slice] slice of a [`JsString`]
    #[must_use]
    pub fn as_slice(&self) -> &[u16] {
        self
    }

    /// Creates a new [`JsString`] from the concatenation of `x` and `y`.
    #[must_use]
    pub fn concat(x: &[u16], y: &[u16]) -> Self {
        Self::concat_array(&[x, y])
    }

    /// Creates a new [`JsString`] from the concatenation of every element of
    /// `strings`.
    #[must_use]
    pub fn concat_array(strings: &[&[u16]]) -> Self {
        let mut full_count = 0usize;
        for &string in strings {
            let Some(sum) = full_count.checked_add(string.len()) else {
                alloc_overflow()
            };
            full_count = sum;
        }

        let ptr = Self::allocate_inner(full_count);

        let string = {
            // SAFETY: `allocate_inner` guarantees that `ptr` is a valid pointer.
            let mut data = unsafe { addr_of_mut!((*ptr.as_ptr()).data).cast() };
            for string in strings {
                let count = string.len();
                // SAFETY:
                // The sum of all `count` for each `string` equals `full_count`, and since we're
                // iteratively writing each of them to `data`, `copy_non_overlapping` always stays
                // in-bounds for `count` reads of each string and `full_count` writes to `data`.
                //
                // Each `string` must be properly aligned to be a valid slice, and `data` must be
                // properly aligned by `allocate_inner`.
                //
                // `allocate_inner` must return a valid pointer to newly allocated memory, meaning
                // `ptr` and all `string`s should never overlap.
                unsafe {
                    ptr::copy_nonoverlapping(string.as_ptr(), data, count);
                    data = data.add(count);
                }
            }
            Self {
                // Safety: We already know it's a valid heap pointer.
                ptr: unsafe { Tagged::from_ptr(ptr.as_ptr()) },
            }
        };

        StaticJsStrings::get_string(&string[..]).unwrap_or(string)
    }

    /// Decodes a [`JsString`] into a [`String`], replacing invalid data with its escaped representation
    /// in 4 digit hexadecimal.
    #[must_use]
    pub fn to_std_string_escaped(&self) -> String {
        self.to_string_escaped()
    }

    /// Decodes a [`JsString`] into a [`String`], returning
    /// [`FromUtf16Error`][std::string::FromUtf16Error] if it contains any invalid data.
    pub fn to_std_string(&self) -> Result<String, std::string::FromUtf16Error> {
        String::from_utf16(self)
    }

    /// Decodes a [`JsString`] into an iterator of [`Result<String, u16>`], returning surrogates as
    /// errors.
    pub fn to_std_string_with_surrogates(&self) -> impl Iterator<Item = Result<String, u16>> + '_ {
        struct WideStringDecoderIterator<I: Iterator> {
            codepoints: Peekable<I>,
        }

        impl<I: Iterator> WideStringDecoderIterator<I> {
            fn new(iterator: I) -> Self {
                Self {
                    codepoints: iterator.peekable(),
                }
            }
        }

        impl<I> Iterator for WideStringDecoderIterator<I>
        where
            I: Iterator<Item = CodePoint>,
        {
            type Item = Result<String, u16>;

            fn next(&mut self) -> Option<Self::Item> {
                let cp = self.codepoints.next()?;
                let char = match cp {
                    CodePoint::Unicode(c) => c,
                    CodePoint::UnpairedSurrogate(surr) => return Some(Err(surr)),
                };

                let mut string = String::from(char);

                loop {
                    let Some(cp) = self.codepoints.peek().and_then(|cp| match cp {
                        CodePoint::Unicode(c) => Some(*c),
                        CodePoint::UnpairedSurrogate(_) => None,
                    }) else {
                        break;
                    };

                    string.push(cp);

                    self.codepoints
                        .next()
                        .expect("should exist by the check above");
                }

                Some(Ok(string))
            }
        }

        WideStringDecoderIterator::new(self.code_points())
    }

    /// Maps the valid segments of an UTF16 string and leaves the unpaired surrogates unchanged.
    #[must_use]
    pub fn map_valid_segments<F>(&self, mut f: F) -> Self
    where
        F: FnMut(String) -> String,
    {
        let mut text = Vec::new();

        for part in self.to_std_string_with_surrogates() {
            match part {
                Ok(string) => text.extend(f(string).encode_utf16()),
                Err(surr) => text.push(surr),
            }
        }

        js_string!(text)
    }

    /// Gets an iterator of all the Unicode codepoints of a [`JsString`].
    pub fn code_points(&self) -> impl Iterator<Item = CodePoint> + Clone + '_ {
        char::decode_utf16(self.iter().copied()).map(|res| match res {
            Ok(c) => CodePoint::Unicode(c),
            Err(e) => CodePoint::UnpairedSurrogate(e.unpaired_surrogate()),
        })
    }

    /// Abstract operation `StringIndexOf ( string, searchValue, fromIndex )`
    ///
    /// Note: Instead of returning an isize with `-1` as the "not found" value, we make use of the
    /// type system and return <code>[Option]\<usize\></code> with [`None`] as the "not found" value.
    ///
    /// More information:
    ///  - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-stringindexof
    pub(crate) fn index_of(&self, search_value: &[u16], from_index: usize) -> Option<usize> {
        // 1. Assert: Type(string) is String.
        // 2. Assert: Type(searchValue) is String.
        // 3. Assert: fromIndex is a non-negative integer.

        // 4. Let len be the length of string.
        let len = self.len();

        // 5. If searchValue is the empty String and fromIndex ≤ len, return fromIndex.
        if search_value.is_empty() {
            return if from_index <= len {
                Some(from_index)
            } else {
                None
            };
        }

        // 6. Let searchLen be the length of searchValue.
        // 7. For each integer i starting with fromIndex such that i ≤ len - searchLen, in ascending order, do
        // a. Let candidate be the substring of string from i to i + searchLen.
        // b. If candidate is the same sequence of code units as searchValue, return i.
        // 8. Return -1.
        self.windows(search_value.len())
            .skip(from_index)
            .position(|s| s == search_value)
            .map(|i| i + from_index)
    }

    /// Abstract operation `CodePointAt( string, position )`.
    ///
    /// The abstract operation `CodePointAt` takes arguments `string` (a String) and `position` (a
    /// non-negative integer) and returns a Record with fields `[[CodePoint]]` (a code point),
    /// `[[CodeUnitCount]]` (a positive integer), and `[[IsUnpairedSurrogate]]` (a Boolean). It
    /// interprets string as a sequence of UTF-16 encoded code points, as described in 6.1.4, and reads
    /// from it a single code point starting with the code unit at index `position`.
    ///
    /// More information:
    ///  - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-codepointat
    pub(crate) fn code_point_at(&self, position: usize) -> CodePoint {
        // 1. Let size be the length of string.
        let size = self.len();

        // 2. Assert: position ≥ 0 and position < size.
        // position >= 0 ensured by position: usize
        assert!(position < size);

        // 3. Let first be the code unit at index position within string.
        // 4. Let cp be the code point whose numeric value is that of first.
        // 5. If first is not a leading surrogate or trailing surrogate, then
        // a. Return the Record { [[CodePoint]]: cp, [[CodeUnitCount]]: 1, [[IsUnpairedSurrogate]]: false }.
        // 6. If first is a trailing surrogate or position + 1 = size, then
        // a. Return the Record { [[CodePoint]]: cp, [[CodeUnitCount]]: 1, [[IsUnpairedSurrogate]]: true }.
        // 7. Let second be the code unit at index position + 1 within string.
        // 8. If second is not a trailing surrogate, then
        // a. Return the Record { [[CodePoint]]: cp, [[CodeUnitCount]]: 1, [[IsUnpairedSurrogate]]: true }.
        // 9. Set cp to ! UTF16SurrogatePairToCodePoint(first, second).

        // We can skip the checks and instead use the `char::decode_utf16` function to take care of that for us.
        let code_point = self
            .get(position..=position + 1)
            .unwrap_or(&self[position..=position]);

        match char::decode_utf16(code_point.iter().copied())
            .next()
            .expect("code_point always has a value")
        {
            Ok(c) => CodePoint::Unicode(c),
            Err(e) => CodePoint::UnpairedSurrogate(e.unpaired_surrogate()),
        }
    }

    /// Abstract operation `StringToNumber ( str )`
    ///
    /// More information:
    /// - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-stringtonumber
    pub(crate) fn to_number(&self) -> f64 {
        // 1. Let text be ! StringToCodePoints(str).
        // 2. Let literal be ParseText(text, StringNumericLiteral).
        let Ok(string) = self.to_std_string() else {
            // 3. If literal is a List of errors, return NaN.
            return f64::NAN;
        };
        // 4. Return StringNumericValue of literal.
        let string = string.trim_matches(is_trimmable_whitespace);
        match string {
            "" => return 0.0,
            "-Infinity" => return f64::NEG_INFINITY,
            "Infinity" | "+Infinity" => return f64::INFINITY,
            _ => {}
        }

        let mut s = string.bytes();
        let base = match (s.next(), s.next()) {
            (Some(b'0'), Some(b'b' | b'B')) => Some(2),
            (Some(b'0'), Some(b'o' | b'O')) => Some(8),
            (Some(b'0'), Some(b'x' | b'X')) => Some(16),
            // Make sure that no further variants of "infinity" are parsed.
            (Some(b'i' | b'I'), _) => {
                return f64::NAN;
            }
            _ => None,
        };

        // Parse numbers that begin with `0b`, `0o` and `0x`.
        if let Some(base) = base {
            let string = &string[2..];
            if string.is_empty() {
                return f64::NAN;
            }

            // Fast path
            if let Ok(value) = u32::from_str_radix(string, base) {
                return f64::from(value);
            }

            // Slow path
            let mut value: f64 = 0.0;
            for c in s {
                if let Some(digit) = char::from(c).to_digit(base) {
                    value = value.mul_add(f64::from(base), f64::from(digit));
                } else {
                    return f64::NAN;
                }
            }
            return value;
        }

        fast_float::parse(string).unwrap_or(f64::NAN)
    }

    /// Abstract operation `StringToBigInt ( str )`
    ///
    /// More information:
    /// - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-stringtobigint
    pub(crate) fn to_big_int(&self) -> Option<JsBigInt> {
        // 1. Let text be ! StringToCodePoints(str).
        // 2. Let literal be ParseText(text, StringIntegerLiteral).
        // 3. If literal is a List of errors, return undefined.
        // 4. Let mv be the MV of literal.
        // 5. Assert: mv is an integer.
        // 6. Return ℤ(mv).
        JsBigInt::from_string(self.to_std_string().ok().as_ref()?)
    }

    /// Allocates a new [`RawJsString`] with an internal capacity of `str_len` chars.
    ///
    /// # Panics
    ///
    /// Panics if `try_allocate_inner` returns `Err`.
    fn allocate_inner(str_len: usize) -> NonNull<RawJsString> {
        match Self::try_allocate_inner(str_len) {
            Ok(v) => v,
            Err(None) => alloc_overflow(),
            Err(Some(layout)) => std::alloc::handle_alloc_error(layout),
        }
    }

    // This is marked as safe because it is always valid to call this function to request any number
    // of `u16`, since this function ought to fail on an OOM error.
    /// Allocates a new [`RawJsString`] with an internal capacity of `str_len` chars.
    ///
    /// # Errors
    ///
    /// Returns `Err(None)` on integer overflows `usize::MAX`.
    /// Returns `Err(Some(Layout))` on allocation error.
    fn try_allocate_inner(str_len: usize) -> Result<NonNull<RawJsString>, Option<Layout>> {
        let (layout, offset) = Layout::array::<u16>(str_len)
            .and_then(|arr| Layout::new::<RawJsString>().extend(arr))
            .map(|(layout, offset)| (layout.pad_to_align(), offset))
            .map_err(|_| None)?;

        debug_assert_eq!(offset, DATA_OFFSET);

        #[allow(clippy::cast_ptr_alignment)]
        // SAFETY:
        // The layout size of `RawJsString` is never zero, since it has to store
        // the length of the string and the reference count.
        let inner = unsafe { alloc(layout).cast::<RawJsString>() };

        // We need to verify that the pointer returned by `alloc` is not null, otherwise
        // we should abort, since an allocation error is pretty unrecoverable for us
        // right now.
        let inner = NonNull::new(inner).ok_or(Some(layout))?;

        // SAFETY:
        // `NonNull` verified for us that the pointer returned by `alloc` is valid,
        // meaning we can write to its pointed memory.
        unsafe {
            // Write the first part, the `RawJsString`.
            inner.as_ptr().write(RawJsString {
                len: str_len,
                refcount: Cell::new(1),
                data: [0; 0],
            });
        }

        debug_assert!({
            let inner = inner.as_ptr();
            // SAFETY:
            // - `inner` must be a valid pointer, since it comes from a `NonNull`,
            // meaning we can safely dereference it to `RawJsString`.
            // - `offset` should point us to the beginning of the array,
            // and since we requested an `RawJsString` layout with a trailing
            // `[u16; str_len]`, the memory of the array must be in the `usize`
            // range for the allocation to succeed.
            unsafe {
                ptr::eq(
                    inner.cast::<u8>().add(offset).cast(),
                    (*inner).data.as_mut_ptr(),
                )
            }
        });

        Ok(inner)
    }

    /// Creates a new [`JsString`] from `data`, without checking if the string is in the interner.
    fn from_slice_skip_interning(string: &[u16]) -> Self {
        let count = string.len();
        let ptr = Self::allocate_inner(count);

        // SAFETY: `allocate_inner` guarantees that `ptr` is a valid pointer.
        let data = unsafe { addr_of_mut!((*ptr.as_ptr()).data) };
        // SAFETY:
        // - We read `count = data.len()` elements from `data`, which is within the bounds of the slice.
        // - `allocate_inner` must allocate at least `count` elements, which allows us to safely
        //   write at least `count` elements.
        // - `allocate_inner` should already take care of the alignment of `ptr`, and `data` must be
        //   aligned to be a valid slice.
        // - `allocate_inner` must return a valid pointer to newly allocated memory, meaning `ptr`
        //   and `data` should never overlap.
        unsafe {
            ptr::copy_nonoverlapping(string.as_ptr(), data.cast(), count);
        }
        Self {
            // Safety: `allocate_inner` guarantees `ptr` is a valid heap pointer.
            ptr: Tagged::from_non_null(ptr),
        }
    }
}

impl AsRef<[u16]> for JsString {
    fn as_ref(&self) -> &[u16] {
        self
    }
}

impl Borrow<[u16]> for JsString {
    fn borrow(&self) -> &[u16] {
        self
    }
}

impl Clone for JsString {
    #[inline]
    fn clone(&self) -> Self {
        if let UnwrappedTagged::Ptr(inner) = self.ptr.unwrap() {
            // SAFETY: The reference count of `JsString` guarantees that `raw` is always valid.
            let inner = unsafe { inner.as_ref() };
            let strong = inner.refcount.get().wrapping_add(1);
            if strong == 0 {
                abort()
            }
            inner.refcount.set(strong);
        }
        Self { ptr: self.ptr }
    }
}

impl Default for JsString {
    #[inline]
    fn default() -> Self {
        StaticJsStrings::EMPTY_STRING
    }
}

impl Drop for JsString {
    fn drop(&mut self) {
        if let UnwrappedTagged::Ptr(raw) = self.ptr.unwrap() {
            // See https://doc.rust-lang.org/src/alloc/sync.rs.html#1672 for details.

            // SAFETY: The reference count of `JsString` guarantees that `raw` is always valid.
            let inner = unsafe { raw.as_ref() };
            inner.refcount.set(inner.refcount.get() - 1);
            if inner.refcount.get() != 0 {
                return;
            }

            // SAFETY:
            // All the checks for the validity of the layout have already been made on `alloc_inner`,
            // so we can skip the unwrap.
            let layout = unsafe {
                Layout::for_value(inner)
                    .extend(Layout::array::<u16>(inner.len).unwrap_unchecked())
                    .unwrap_unchecked()
                    .0
                    .pad_to_align()
            };
            // Safety:
            // If refcount is 0 and we call drop, that means this is the last `JsString` which
            // points to this memory allocation, so deallocating it is safe.
            unsafe {
                dealloc(raw.as_ptr().cast(), layout);
            }
        }
    }
}

impl std::fmt::Debug for JsString {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        std::char::decode_utf16(self.as_slice().to_owned())
            .map(|r| {
                r.map_or_else(
                    |err| format!("<0x{:04x}>", err.unpaired_surrogate()),
                    String::from,
                )
            })
            .collect::<String>()
            .fmt(f)
    }
}

impl Deref for JsString {
    type Target = [u16];

    fn deref(&self) -> &Self::Target {
        match self.ptr.unwrap() {
            UnwrappedTagged::Ptr(h) => {
                // SAFETY:
                // - The `RawJsString` type has all the necessary information to reconstruct a valid
                //   slice (length and starting pointer).
                //
                // - We aligned `h.data` on allocation, and the block is of size `h.len`, so this
                //   should only generate valid reads.
                //
                // - The lifetime of `&Self::Target` is shorter than the lifetime of `self`, as seen
                //   by its signature, so this doesn't outlive `self`.
                unsafe {
                    let h = h.as_ptr();
                    std::slice::from_raw_parts(addr_of!((*h).data).cast(), (*h).len)
                }
            }
            UnwrappedTagged::Tag(index) => {
                // SAFETY: all static strings are valid indices on `STATIC_JS_STRINGS`, so `get` should always
                // return `Some`.
                unsafe { StaticJsStrings::get(index).unwrap_unchecked() }
            }
        }
    }
}

impl Eq for JsString {}

impl From<&[u16]> for JsString {
    fn from(s: &[u16]) -> Self {
        StaticJsStrings::get_string(s).unwrap_or_else(|| Self::from_slice_skip_interning(s))
    }
}

impl From<Vec<u16>> for JsString {
    fn from(vec: Vec<u16>) -> Self {
        Self::from(&vec[..])
    }
}

impl From<&str> for JsString {
    #[inline]
    fn from(s: &str) -> Self {
        let s = s.encode_utf16().collect::<Vec<_>>();

        Self::from(&s[..])
    }
}

impl From<String> for JsString {
    #[inline]
    fn from(s: String) -> Self {
        Self::from(s.as_str())
    }
}

impl<const N: usize> From<&[u16; N]> for JsString {
    fn from(s: &[u16; N]) -> Self {
        Self::from(&s[..])
    }
}

impl Hash for JsString {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self[..].hash(state);
    }
}

impl<I: SliceIndex<[u16]>> Index<I> for JsString {
    type Output = I::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        Index::index(&**self, index)
    }
}

impl Ord for JsString {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self[..].cmp(other)
    }
}

impl PartialEq for JsString {
    fn eq(&self, other: &Self) -> bool {
        self[..] == other[..]
    }
}

impl PartialEq<JsString> for [u16] {
    fn eq(&self, other: &JsString) -> bool {
        self == &**other
    }
}

impl<const N: usize> PartialEq<JsString> for [u16; N] {
    fn eq(&self, other: &JsString) -> bool {
        self[..] == *other
    }
}

impl PartialEq<[u16]> for JsString {
    fn eq(&self, other: &[u16]) -> bool {
        &**self == other
    }
}

impl<const N: usize> PartialEq<[u16; N]> for JsString {
    fn eq(&self, other: &[u16; N]) -> bool {
        *self == other[..]
    }
}

impl PartialEq<str> for JsString {
    fn eq(&self, other: &str) -> bool {
        let utf16 = self.code_points();
        let mut utf8 = other.chars();

        for lhs in utf16 {
            if let Some(rhs) = utf8.next() {
                match lhs {
                    CodePoint::Unicode(lhs) if lhs == rhs => continue,
                    _ => return false,
                }
            }
            return false;
        }
        utf8.next().is_none()
    }
}

impl PartialEq<JsString> for str {
    fn eq(&self, other: &JsString) -> bool {
        other == self
    }
}

impl PartialOrd for JsString {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl FromStr for JsString {
    type Err = Infallible;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Ok(Self::from(s))
    }
}

/// Utility trait that adds trimming functionality to every `UTF-16` string.
pub(crate) trait Utf16Trim {
    /// Trims both leading and trailing space from `self`.
    fn trim(&self) -> &Self {
        self.trim_start().trim_end()
    }

    /// Trims all leading space from `self`.
    fn trim_start(&self) -> &Self;

    /// Trims all trailing space from `self`.
    fn trim_end(&self) -> &Self;
}

impl Utf16Trim for [u16] {
    fn trim_start(&self) -> &Self {
        if let Some(left) = self.iter().copied().position(|r| {
            !char::from_u32(u32::from(r))
                .map(is_trimmable_whitespace)
                .unwrap_or_default()
        }) {
            &self[left..]
        } else {
            &[]
        }
    }
    fn trim_end(&self) -> &Self {
        if let Some(right) = self.iter().copied().rposition(|r| {
            !char::from_u32(u32::from(r))
                .map(is_trimmable_whitespace)
                .unwrap_or_default()
        }) {
            &self[..=right]
        } else {
            &[]
        }
    }
}

/// Utility trait that adds a `UTF-16` escaped representation to every [`[u16]`][slice].
pub(crate) trait ToStringEscaped {
    /// Decodes `self` as an `UTF-16` encoded string, escaping any unpaired surrogates by its
    /// codepoint value.
    fn to_string_escaped(&self) -> String;
}

impl ToStringEscaped for [u16] {
    fn to_string_escaped(&self) -> String {
        char::decode_utf16(self.iter().copied())
            .map(|r| match r {
                Ok(c) => String::from(c),
                Err(e) => format!("\\u{:04X}", e.unpaired_surrogate()),
            })
            .collect()
    }
}

#[allow(clippy::redundant_clone)]
#[cfg(test)]
mod tests {
    use crate::tagged::UnwrappedTagged;

    use super::utf16;
    use super::JsString;

    impl JsString {
        /// Gets the number of `JsString`s which point to this allocation.
        fn refcount(&self) -> Option<usize> {
            match self.ptr.unwrap() {
                UnwrappedTagged::Ptr(inner) => {
                    // SAFETY: The reference count of `JsString` guarantees that `inner` is always valid.
                    let inner = unsafe { inner.as_ref() };
                    Some(inner.refcount.get())
                }
                UnwrappedTagged::Tag(_inner) => None,
            }
        }
    }

    #[test]
    fn empty() {
        let s = js_string!();
        assert_eq!(*s, "".encode_utf16().collect::<Vec<u16>>());
    }

    #[test]
    fn refcount() {
        let x = js_string!("Hello world");
        assert_eq!(x.refcount(), Some(1));

        {
            let y = x.clone();
            assert_eq!(x.refcount(), Some(2));
            assert_eq!(y.refcount(), Some(2));

            {
                let z = y.clone();
                assert_eq!(x.refcount(), Some(3));
                assert_eq!(y.refcount(), Some(3));
                assert_eq!(z.refcount(), Some(3));
            }

            assert_eq!(x.refcount(), Some(2));
            assert_eq!(y.refcount(), Some(2));
        }

        assert_eq!(x.refcount(), Some(1));
    }

    #[test]
    fn static_refcount() {
        let x = js_string!();
        assert_eq!(x.refcount(), None);

        {
            let y = x.clone();
            assert_eq!(x.refcount(), None);
            assert_eq!(y.refcount(), None);
        };

        assert_eq!(x.refcount(), None);
    }

    #[test]
    fn ptr_eq() {
        let x = js_string!("Hello");
        let y = x.clone();

        assert!(!x.ptr.is_tagged());

        assert_eq!(x.ptr.addr(), y.ptr.addr());

        let z = js_string!("Hello");
        assert_ne!(x.ptr.addr(), z.ptr.addr());
        assert_ne!(y.ptr.addr(), z.ptr.addr());
    }

    #[test]
    fn static_ptr_eq() {
        let x = js_string!();
        let y = x.clone();

        assert!(x.ptr.is_tagged());

        assert_eq!(x.ptr.addr(), y.ptr.addr());

        let z = js_string!();
        assert_eq!(x.ptr.addr(), z.ptr.addr());
        assert_eq!(y.ptr.addr(), z.ptr.addr());
    }

    #[test]
    fn as_str() {
        const HELLO: &str = "Hello";
        let x = js_string!(HELLO);

        assert_eq!(*x, HELLO.encode_utf16().collect::<Vec<u16>>());
    }

    #[test]
    fn hash() {
        use std::collections::hash_map::DefaultHasher;
        use std::hash::{Hash, Hasher};

        const HELLOWORLD: &[u16] = utf16!("Hello World!");
        let x = js_string!(HELLOWORLD);

        assert_eq!(&*x, HELLOWORLD);

        let mut hasher = DefaultHasher::new();
        HELLOWORLD.hash(&mut hasher);
        let s_hash = hasher.finish();

        let mut hasher = DefaultHasher::new();
        x.hash(&mut hasher);
        let x_hash = hasher.finish();

        assert_eq!(s_hash, x_hash);
    }

    #[test]
    fn concat() {
        const Y: &[u16] = utf16!(", ");
        const W: &[u16] = utf16!("!");

        let x = js_string!("hello");
        let z = js_string!("world");

        let xy = js_string!(&x, Y);
        assert_eq!(&xy, utf16!("hello, "));
        assert_eq!(xy.refcount(), Some(1));

        let xyz = js_string!(&xy, &z);
        assert_eq!(&xyz, utf16!("hello, world"));
        assert_eq!(xyz.refcount(), Some(1));

        let xyzw = js_string!(&xyz, W);
        assert_eq!(&xyzw, utf16!("hello, world!"));
        assert_eq!(xyzw.refcount(), Some(1));
    }
}