1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
use super::{
    shape::{
        property_table::PropertyTableInner,
        shared_shape::TransitionKey,
        slot::{Slot, SlotAttributes},
        ChangeTransitionAction, RootShape, Shape, UniqueShape,
    },
    JsPrototype, ObjectStorage, PropertyDescriptor, PropertyKey,
};
use crate::{property::PropertyDescriptorBuilder, JsString, JsSymbol, JsValue};
use boa_gc::{custom_trace, Finalize, Trace};
use indexmap::IndexMap;
use rustc_hash::{FxHashMap, FxHasher};
use std::{collections::hash_map, hash::BuildHasherDefault, iter::FusedIterator};
use thin_vec::ThinVec;

/// Wrapper around `indexmap::IndexMap` for usage in `PropertyMap`.
#[derive(Debug, Finalize)]
struct OrderedHashMap<K: Trace>(IndexMap<K, PropertyDescriptor, BuildHasherDefault<FxHasher>>);

impl<K: Trace> Default for OrderedHashMap<K> {
    fn default() -> Self {
        Self(IndexMap::with_hasher(BuildHasherDefault::default()))
    }
}

unsafe impl<K: Trace> Trace for OrderedHashMap<K> {
    custom_trace!(this, mark, {
        for (k, v) in &this.0 {
            mark(k);
            mark(v);
        }
    });
}

/// This represents all the indexed properties.
///
/// The index properties can be stored in two storage methods:
/// - `Dense` Storage
/// - `Sparse` Storage
///
/// By default it is dense storage.
#[derive(Debug, Trace, Finalize)]
enum IndexedProperties {
    /// Dense storage holds a contiguous array of properties where the index in the array is the key of the property.
    /// These are known to be data descriptors with a value field, writable field set to `true`, configurable field set to `true`, enumerable field set to `true`.
    ///
    /// Since we know the properties of the property descriptors (and they are all the same) we can omit it and just store only
    /// the value field and construct the data property descriptor on demand.
    ///
    /// This storage method is used by default.
    Dense(ThinVec<JsValue>),

    /// Sparse storage this storage is used as a backup if the element keys are not continuous or the property descriptors
    /// are not data descriptors with with a value field, writable field set to `true`, configurable field set to `true`, enumerable field set to `true`.
    ///
    /// This method uses more space, since we also have to store the property descriptors, not just the value.
    /// It is also slower because we need to do a hash lookup.
    Sparse(Box<FxHashMap<u32, PropertyDescriptor>>),
}

impl Default for IndexedProperties {
    #[inline]
    fn default() -> Self {
        Self::Dense(ThinVec::new())
    }
}

impl IndexedProperties {
    fn new(elements: ThinVec<JsValue>) -> Self {
        Self::Dense(elements)
    }

    /// Get a property descriptor if it exists.
    fn get(&self, key: u32) -> Option<PropertyDescriptor> {
        match self {
            Self::Sparse(ref map) => map.get(&key).cloned(),
            Self::Dense(ref vec) => vec.get(key as usize).map(|value| {
                PropertyDescriptorBuilder::new()
                    .writable(true)
                    .enumerable(true)
                    .configurable(true)
                    .value(value.clone())
                    .build()
            }),
        }
    }

    /// Helper function for converting from a dense storage type to sparse storage type.
    fn convert_dense_to_sparse(vec: &mut ThinVec<JsValue>) -> FxHashMap<u32, PropertyDescriptor> {
        let data = std::mem::take(vec);

        data.into_iter()
            .enumerate()
            .map(|(index, value)| {
                (
                    index as u32,
                    PropertyDescriptorBuilder::new()
                        .writable(true)
                        .enumerable(true)
                        .configurable(true)
                        .value(value)
                        .build(),
                )
            })
            .collect()
    }

    /// Inserts a property descriptor with the specified key.
    fn insert(&mut self, key: u32, property: PropertyDescriptor) -> bool {
        let vec = match self {
            Self::Sparse(map) => return map.insert(key, property).is_some(),
            Self::Dense(vec) => {
                let len = vec.len() as u32;
                if key <= len
                    && property.value().is_some()
                    && property.writable().unwrap_or(false)
                    && property.enumerable().unwrap_or(false)
                    && property.configurable().unwrap_or(false)
                {
                    // Fast Path: continues array access.

                    let mut value = property
                        .value()
                        .cloned()
                        .expect("already checked that the property descriptor has a value field");

                    // If the key is pointing one past the last element, we push it!
                    //
                    // Since the previous key is the current key - 1. Meaning that the elements are continuos.
                    if key == len {
                        vec.push(value);
                        return false;
                    }

                    // If it the key points in at a already taken index, swap and return it.
                    std::mem::swap(&mut vec[key as usize], &mut value);
                    return true;
                }

                vec
            }
        };

        // Slow path: converting to sparse storage.
        let mut map = Self::convert_dense_to_sparse(vec);
        let replaced = map.insert(key, property).is_some();
        *self = Self::Sparse(Box::new(map));

        replaced
    }

    /// Removes a property descriptor with the specified key.
    fn remove(&mut self, key: u32) -> bool {
        let vec = match self {
            Self::Sparse(map) => {
                return map.remove(&key).is_some();
            }
            Self::Dense(vec) => {
                // Fast Path: contiguous storage.

                // Has no elements or out of range, nothing to delete!
                if vec.is_empty() || key as usize >= vec.len() {
                    return false;
                }

                // If the key is pointing at the last element, then we pop it.
                //
                // It does not make the storage sparse.
                if key as usize == vec.len().wrapping_sub(1) {
                    vec.pop().expect("Already checked if it is out of bounds");
                    return true;
                }

                vec
            }
        };

        // Slow Path: conversion to sparse storage.
        let mut map = Self::convert_dense_to_sparse(vec);
        let removed = map.remove(&key).is_some();
        *self = Self::Sparse(Box::new(map));

        removed
    }

    /// Check if we contain the key to a property descriptor.
    fn contains_key(&self, key: u32) -> bool {
        match self {
            Self::Sparse(map) => map.contains_key(&key),
            Self::Dense(vec) => (0..vec.len() as u32).contains(&key),
        }
    }

    fn iter(&self) -> IndexProperties<'_> {
        match self {
            Self::Dense(vec) => IndexProperties::Dense(vec.iter().enumerate()),
            Self::Sparse(map) => IndexProperties::Sparse(map.iter()),
        }
    }

    fn keys(&self) -> IndexPropertyKeys<'_> {
        match self {
            Self::Dense(vec) => IndexPropertyKeys::Dense(0..vec.len() as u32),
            Self::Sparse(map) => IndexPropertyKeys::Sparse(map.keys()),
        }
    }

    fn values(&self) -> IndexPropertyValues<'_> {
        match self {
            Self::Dense(vec) => IndexPropertyValues::Dense(vec.iter()),
            Self::Sparse(map) => IndexPropertyValues::Sparse(map.values()),
        }
    }
}

/// A [`PropertyMap`] contains all the properties of an object.
///
/// The property values are stored in different data structures based on keys.
#[derive(Default, Debug, Trace, Finalize)]
pub struct PropertyMap {
    /// Properties stored with integers as keys.
    indexed_properties: IndexedProperties,

    pub(crate) shape: Shape,
    pub(crate) storage: ObjectStorage,
}

impl PropertyMap {
    /// Create a new [`PropertyMap`].
    #[must_use]
    #[inline]
    pub fn new(shape: Shape, elements: ThinVec<JsValue>) -> Self {
        Self {
            indexed_properties: IndexedProperties::new(elements),
            shape,
            storage: Vec::default(),
        }
    }

    /// Construct a [`PropertyMap`] from with the given prototype with an unique [`Shape`].
    #[must_use]
    #[inline]
    pub fn from_prototype_unique_shape(prototype: JsPrototype) -> Self {
        Self {
            indexed_properties: IndexedProperties::default(),
            shape: UniqueShape::new(prototype, PropertyTableInner::default()).into(),
            storage: Vec::default(),
        }
    }

    /// Construct a [`PropertyMap`] from with the given prototype with a shared shape [`Shape`].
    #[must_use]
    #[inline]
    pub fn from_prototype_with_shared_shape(
        root_shape: &RootShape,
        prototype: JsPrototype,
    ) -> Self {
        let shape = root_shape.shape().change_prototype_transition(prototype);
        Self {
            indexed_properties: IndexedProperties::default(),
            shape: shape.into(),
            storage: Vec::default(),
        }
    }

    /// Get the property with the given key from the [`PropertyMap`].
    #[must_use]
    pub fn get(&self, key: &PropertyKey) -> Option<PropertyDescriptor> {
        if let PropertyKey::Index(index) = key {
            return self.indexed_properties.get(index.get());
        }
        if let Some(slot) = self.shape.lookup(key) {
            return Some(self.get_storage(slot));
        }

        None
    }

    /// Get the property with the given key from the [`PropertyMap`].
    #[must_use]
    pub(crate) fn get_with_slot(
        &self,
        key: &PropertyKey,
        out_slot: &mut Slot,
    ) -> Option<PropertyDescriptor> {
        if let PropertyKey::Index(index) = key {
            return self.indexed_properties.get(index.get());
        }
        if let Some(slot) = self.shape.lookup(key) {
            out_slot.index = slot.index;

            // Remove all descriptor attributes, but keep inline caching bits.
            out_slot.attributes = (out_slot.attributes & SlotAttributes::INLINE_CACHE_BITS)
                | slot.attributes
                | SlotAttributes::FOUND;
            return Some(self.get_storage(slot));
        }

        None
    }

    /// Get the property with the given key from the [`PropertyMap`].
    #[must_use]
    pub(crate) fn get_storage(&self, Slot { index, attributes }: Slot) -> PropertyDescriptor {
        let index = index as usize;
        let mut builder = PropertyDescriptor::builder()
            .configurable(attributes.contains(SlotAttributes::CONFIGURABLE))
            .enumerable(attributes.contains(SlotAttributes::ENUMERABLE));
        if attributes.is_accessor_descriptor() {
            if attributes.has_get() {
                builder = builder.get(self.storage[index].clone());
            }
            if attributes.has_set() {
                builder = builder.set(self.storage[index + 1].clone());
            }
        } else {
            builder = builder.writable(attributes.contains(SlotAttributes::WRITABLE));
            builder = builder.value(self.storage[index].clone());
        }
        builder.build()
    }

    /// Insert the given property descriptor with the given key [`PropertyMap`].
    pub fn insert(&mut self, key: &PropertyKey, property: PropertyDescriptor) -> bool {
        let mut dummy_slot = Slot::new();
        self.insert_with_slot(key, property, &mut dummy_slot)
    }

    /// Insert the given property descriptor with the given key [`PropertyMap`].
    pub(crate) fn insert_with_slot(
        &mut self,
        key: &PropertyKey,
        property: PropertyDescriptor,
        out_slot: &mut Slot,
    ) -> bool {
        if let PropertyKey::Index(index) = key {
            return self.indexed_properties.insert(index.get(), property);
        }

        let attributes = property.to_slot_attributes();

        if let Some(slot) = self.shape.lookup(key) {
            let index = slot.index as usize;

            if slot.attributes != attributes {
                let key = TransitionKey {
                    property_key: key.clone(),
                    attributes,
                };
                let transition = self.shape.change_attributes_transition(key);
                self.shape = transition.shape;
                match transition.action {
                    ChangeTransitionAction::Nothing => {}
                    ChangeTransitionAction::Remove => {
                        self.storage.remove(slot.index as usize + 1);
                    }
                    ChangeTransitionAction::Insert => {
                        // insert after index which is (index + 1).
                        self.storage.insert(index, JsValue::undefined());
                    }
                }
            }

            if attributes.is_accessor_descriptor() {
                if attributes.has_get() {
                    self.storage[index] = property
                        .get()
                        .cloned()
                        .map(JsValue::new)
                        .unwrap_or_default();
                }
                if attributes.has_set() {
                    self.storage[index + 1] = property
                        .set()
                        .cloned()
                        .map(JsValue::new)
                        .unwrap_or_default();
                }
            } else {
                self.storage[index] = property.expect_value().clone();
            }
            out_slot.index = slot.index;
            out_slot.attributes =
                (out_slot.attributes & SlotAttributes::INLINE_CACHE_BITS) | attributes;
            return true;
        }

        let transition_key = TransitionKey {
            property_key: key.clone(),
            attributes,
        };
        self.shape = self.shape.insert_property_transition(transition_key);

        // Make Sure that if we are inserting, it has the correct slot index.
        debug_assert_eq!(
            self.shape.lookup(key),
            Some(Slot {
                index: self.storage.len() as u32,
                attributes
            })
        );

        out_slot.index = self.storage.len() as u32;
        out_slot.attributes =
            (out_slot.attributes & SlotAttributes::INLINE_CACHE_BITS) | attributes;

        if attributes.is_accessor_descriptor() {
            self.storage.push(
                property
                    .get()
                    .cloned()
                    .map(JsValue::new)
                    .unwrap_or_default(),
            );
            self.storage.push(
                property
                    .set()
                    .cloned()
                    .map(JsValue::new)
                    .unwrap_or_default(),
            );
        } else {
            self.storage
                .push(property.value().cloned().unwrap_or_default());
        }

        false
    }

    /// Remove the property with the given key from the [`PropertyMap`].
    pub fn remove(&mut self, key: &PropertyKey) -> bool {
        if let PropertyKey::Index(index) = key {
            return self.indexed_properties.remove(index.get());
        }
        if let Some(slot) = self.shape.lookup(key) {
            // shift all elements when removing.
            if slot.attributes.is_accessor_descriptor() {
                self.storage.remove(slot.index as usize + 1);
            }
            self.storage.remove(slot.index as usize);

            self.shape = self.shape.remove_property_transition(key);
            return true;
        }

        false
    }

    /// Overrides all the indexed properties, setting it to dense storage.
    pub(crate) fn override_indexed_properties(&mut self, properties: ThinVec<JsValue>) {
        self.indexed_properties = IndexedProperties::Dense(properties);
    }

    /// Returns the vec of dense indexed properties if they exist.
    pub(crate) const fn dense_indexed_properties(&self) -> Option<&ThinVec<JsValue>> {
        if let IndexedProperties::Dense(properties) = &self.indexed_properties {
            Some(properties)
        } else {
            None
        }
    }

    /// Returns the vec of dense indexed properties if they exist.
    pub(crate) fn dense_indexed_properties_mut(&mut self) -> Option<&mut ThinVec<JsValue>> {
        if let IndexedProperties::Dense(properties) = &mut self.indexed_properties {
            Some(properties)
        } else {
            None
        }
    }

    /// An iterator visiting all indexed key-value pairs in arbitrary order. The iterator element type is `(&'a u32, &'a Property)`.
    ///
    /// This iterator does not recurse down the prototype chain.
    #[inline]
    #[must_use]
    pub fn index_properties(&self) -> IndexProperties<'_> {
        self.indexed_properties.iter()
    }

    /// An iterator visiting all index keys in arbitrary order. The iterator element type is `&'a u32`.
    ///
    /// This iterator does not recurse down the prototype chain.
    #[inline]
    #[must_use]
    pub fn index_property_keys(&self) -> IndexPropertyKeys<'_> {
        self.indexed_properties.keys()
    }

    /// An iterator visiting all index values in arbitrary order. The iterator element type is `&'a Property`.
    ///
    /// This iterator does not recurse down the prototype chain.
    #[inline]
    #[must_use]
    pub fn index_property_values(&self) -> IndexPropertyValues<'_> {
        self.indexed_properties.values()
    }

    /// Returns `true` if the given key is contained in the [`PropertyMap`].
    #[inline]
    #[must_use]
    pub fn contains_key(&self, key: &PropertyKey) -> bool {
        if let PropertyKey::Index(index) = key {
            return self.indexed_properties.contains_key(index.get());
        }
        if self.shape.lookup(key).is_some() {
            return true;
        }

        false
    }
}

/// An iterator over the property entries of an `Object`
#[derive(Debug, Clone)]
pub struct Iter<'a> {
    indexed_properties: IndexProperties<'a>,
    string_properties: indexmap::map::Iter<'a, JsString, PropertyDescriptor>,
    symbol_properties: indexmap::map::Iter<'a, JsSymbol, PropertyDescriptor>,
}

impl Iterator for Iter<'_> {
    type Item = (PropertyKey, PropertyDescriptor);
    fn next(&mut self) -> Option<Self::Item> {
        if let Some((key, value)) = self.indexed_properties.next() {
            Some((key.into(), value))
        } else if let Some((key, value)) = self.string_properties.next() {
            Some((key.clone().into(), value.clone()))
        } else {
            let (key, value) = self.symbol_properties.next()?;
            Some((key.clone().into(), value.clone()))
        }
    }
}

impl ExactSizeIterator for Iter<'_> {
    #[inline]
    fn len(&self) -> usize {
        self.indexed_properties.len() + self.string_properties.len() + self.symbol_properties.len()
    }
}

/// An iterator over the indexed property entries of an `Object`.
#[derive(Debug, Clone)]
pub enum IndexProperties<'a> {
    /// An iterator over dense, Vec backed indexed property entries of an `Object`.
    Dense(std::iter::Enumerate<std::slice::Iter<'a, JsValue>>),

    /// An iterator over sparse, HashMap backed indexed property entries of an `Object`.
    Sparse(hash_map::Iter<'a, u32, PropertyDescriptor>),
}

impl Iterator for IndexProperties<'_> {
    type Item = (u32, PropertyDescriptor);

    fn next(&mut self) -> Option<Self::Item> {
        match self {
            Self::Dense(vec) => vec.next().map(|(index, value)| {
                (
                    index as u32,
                    PropertyDescriptorBuilder::new()
                        .writable(true)
                        .configurable(true)
                        .enumerable(true)
                        .value(value.clone())
                        .build(),
                )
            }),
            Self::Sparse(map) => map.next().map(|(index, value)| (*index, value.clone())),
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        match self {
            Self::Dense(vec) => vec.size_hint(),
            Self::Sparse(map) => map.size_hint(),
        }
    }
}

impl ExactSizeIterator for IndexProperties<'_> {
    #[inline]
    fn len(&self) -> usize {
        match self {
            Self::Dense(vec) => vec.len(),
            Self::Sparse(map) => map.len(),
        }
    }
}

impl FusedIterator for IndexProperties<'_> {}

/// An iterator over the index keys (`u32`) of an `Object`.
#[derive(Debug, Clone)]
pub enum IndexPropertyKeys<'a> {
    /// An iterator over dense, Vec backed indexed property entries of an `Object`.
    Dense(std::ops::Range<u32>),

    /// An iterator over sparse, HashMap backed indexed property entries of an `Object`.
    Sparse(hash_map::Keys<'a, u32, PropertyDescriptor>),
}

impl Iterator for IndexPropertyKeys<'_> {
    type Item = u32;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        match self {
            Self::Dense(vec) => vec.next(),
            Self::Sparse(map) => map.next().copied(),
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        match self {
            Self::Dense(vec) => vec.size_hint(),
            Self::Sparse(map) => map.size_hint(),
        }
    }
}

impl ExactSizeIterator for IndexPropertyKeys<'_> {
    #[inline]
    fn len(&self) -> usize {
        match self {
            Self::Dense(vec) => vec.len(),
            Self::Sparse(map) => map.len(),
        }
    }
}

impl FusedIterator for IndexPropertyKeys<'_> {}

/// An iterator over the index values (`Property`) of an `Object`.
#[derive(Debug, Clone)]
pub enum IndexPropertyValues<'a> {
    /// An iterator over dense, Vec backed indexed property entries of an `Object`.
    Dense(std::slice::Iter<'a, JsValue>),

    /// An iterator over sparse, HashMap backed indexed property entries of an `Object`.
    Sparse(hash_map::Values<'a, u32, PropertyDescriptor>),
}

impl Iterator for IndexPropertyValues<'_> {
    type Item = PropertyDescriptor;

    fn next(&mut self) -> Option<Self::Item> {
        match self {
            Self::Dense(vec) => vec.next().map(|value| {
                PropertyDescriptorBuilder::new()
                    .writable(true)
                    .configurable(true)
                    .enumerable(true)
                    .value(value.clone())
                    .build()
            }),
            Self::Sparse(map) => map.next().cloned(),
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        match self {
            Self::Dense(vec) => vec.size_hint(),
            Self::Sparse(map) => map.size_hint(),
        }
    }
}

impl ExactSizeIterator for IndexPropertyValues<'_> {
    #[inline]
    fn len(&self) -> usize {
        match self {
            Self::Dense(vec) => vec.len(),
            Self::Sparse(map) => map.len(),
        }
    }
}