1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
use bm::{ValueOf, Backend, Error, Value, DanglingPackedVector, DanglingVector, Leak, Sequence};
use bm::utils::{vector_tree, host_len};
use primitive_types::U256;
use generic_array::GenericArray;
use alloc::vec::Vec;

use crate::{IntoTree, FromTree, Intermediate, End};

/// Traits for vector converting into a composite tree structure.
pub trait IntoCompositeVectorTree<DB: Backend<Intermediate=Intermediate, End=End>> {
    /// Convert this vector into merkle tree, writing nodes into the
    /// given database, and using the maximum length specified.
    fn into_composite_vector_tree(
        &self,
        db: &mut DB,
        max_len: Option<usize>
    ) -> Result<ValueOf<DB>, Error<DB::Error>>;
}

/// Traits for vector converting into a compact tree structure.
pub trait IntoCompactVectorTree<DB: Backend<Intermediate=Intermediate, End=End>> {
    /// Convert this vector into merkle tree, writing nodes into the
    /// given database, and using the maximum length specified.
    fn into_compact_vector_tree(
        &self,
        db: &mut DB,
        max_len: Option<usize>
    ) -> Result<ValueOf<DB>, Error<DB::Error>>;
}

/// Traits for vector converting from a composite tree structure.
pub trait FromCompositeVectorTree<DB: Backend<Intermediate=Intermediate, End=End>>: Sized {
    /// Convert this type from merkle tree, reading nodes from the
    /// given database, with given length and maximum length.
    fn from_composite_vector_tree(
        root: &ValueOf<DB>,
        db: &DB,
        len: usize,
        max_len: Option<usize>,
    ) -> Result<Self, Error<DB::Error>>;
}

/// Traits for vector converting from a compact tree structure.
pub trait FromCompactVectorTree<DB: Backend<Intermediate=Intermediate, End=End>>: Sized {
    /// Convert this type from merkle tree, reading nodes from the
    /// given database, with given length and maximum length.
    fn from_compact_vector_tree(
        root: &ValueOf<DB>,
        db: &DB,
        len: usize,
        max_len: Option<usize>,
    ) -> Result<Self, Error<DB::Error>>;
}

#[derive(Debug, Clone, Eq, PartialEq)]
/// Elemental `Vec` reference. In ssz's definition, this is a basic "vector".
pub struct ElementalFixedVecRef<'a, T>(pub &'a [T]);
#[derive(Debug, Clone, Eq, PartialEq)]
/// Elemental `Vec` value. In ssz's definition, this is a basic "vector".
pub struct ElementalFixedVec<T>(pub Vec<T>);

macro_rules! impl_builtin_fixed_uint_vector {
    ( $t:ty, $lt:ty ) => {
        impl<'a, DB> IntoCompactVectorTree<DB> for ElementalFixedVecRef<'a, $t> where
            DB: Backend<Intermediate=Intermediate, End=End>
        {
            fn into_compact_vector_tree(
                &self,
                db: &mut DB,
                max_len: Option<usize>
            ) -> Result<ValueOf<DB>, Error<DB::Error>> {
                let mut chunks: Vec<Vec<u8>> = Vec::new();

                for value in self.0 {
                    if chunks.last().map(|v| v.len() == 32).unwrap_or(true) {
                        chunks.push(Vec::new());
                    }

                    let current = chunks.last_mut().expect("chunks must have at least one item; qed");
                    current.append(&mut value.to_le_bytes().into_iter().cloned().collect::<Vec<u8>>());
                }

                if let Some(last) = chunks.last_mut() {
                    while last.len() < 32 {
                        last.push(0u8);
                    }
                }

                vector_tree(&chunks.into_iter().map(|c| {
                    let mut ret = End::default();
                    ret.0.copy_from_slice(&c);
                    Value::End(ret)
                }).collect::<Vec<_>>(), db, max_len.map(|max| host_len::<typenum::U32, $lt>(max)))
            }
        }

        impl<DB> FromCompactVectorTree<DB> for ElementalFixedVec<$t> where
            DB: Backend<Intermediate=Intermediate, End=End>
        {
            fn from_compact_vector_tree(
                root: &ValueOf<DB>,
                db: &DB,
                len: usize,
                max_len: Option<usize>
            ) -> Result<Self, Error<DB::Error>> {
                let packed = DanglingPackedVector::<DB, GenericArray<u8, $lt>, typenum::U32, $lt>::from_leaked(
                    (root.clone(), len, max_len)
                );

                let mut ret = Vec::new();
                for i in 0..len {
                    let value = packed.get(db, i)?;
                    let mut bytes = <$t>::default().to_le_bytes();
                    bytes.copy_from_slice(value.as_slice());
                    ret.push(<$t>::from_le_bytes(bytes));
                }

                Ok(Self(ret))
            }
        }
    }
}

impl_builtin_fixed_uint_vector!(u8, typenum::U1);
impl_builtin_fixed_uint_vector!(u16, typenum::U2);
impl_builtin_fixed_uint_vector!(u32, typenum::U4);
impl_builtin_fixed_uint_vector!(u64, typenum::U8);
impl_builtin_fixed_uint_vector!(u128, typenum::U16);

impl<'a, DB> IntoCompactVectorTree<DB> for ElementalFixedVecRef<'a, U256> where
    DB: Backend<Intermediate=Intermediate, End=End>
{
    fn into_compact_vector_tree(
        &self,
        db: &mut DB,
        max_len: Option<usize>
    ) -> Result<ValueOf<DB>, Error<DB::Error>> {
        vector_tree(&self.0.iter().map(|uint| {
            let mut ret = End::default();
            uint.to_little_endian(&mut ret.0);
            Value::End(ret)
        }).collect::<Vec<_>>(), db, max_len)
    }
}

impl<DB> FromCompactVectorTree<DB> for ElementalFixedVec<U256> where
    DB: Backend<Intermediate=Intermediate, End=End>
{
    fn from_compact_vector_tree(
        root: &ValueOf<DB>,
        db: &DB,
        len: usize,
        max_len: Option<usize>
    ) -> Result<Self, Error<DB::Error>> {
        let vector = DanglingVector::<DB>::from_leaked(
            (root.clone(), len, max_len)
        );

        let mut ret = Vec::new();
        for i in 0..len {
            let value = vector.get(db, i)?;
            ret.push(U256::from(value.as_ref()));
        }

        Ok(Self(ret))
    }
}

impl<'a, DB> IntoCompactVectorTree<DB> for ElementalFixedVecRef<'a, bool> where
    DB: Backend<Intermediate=Intermediate, End=End>,
{
    fn into_compact_vector_tree(
        &self,
        db: &mut DB,
        max_len: Option<usize>
    ) -> Result<ValueOf<DB>, Error<DB::Error>> {
        let mut bytes = Vec::new();
        bytes.resize((self.0.len() + 7) / 8, 0u8);

        for i in 0..self.0.len() {
            bytes[i / 8] |= (self.0[i] as u8) << (i % 8);
        }

        ElementalFixedVecRef(&bytes).into_compact_vector_tree(db, max_len)
    }
}

impl<DB> FromCompactVectorTree<DB> for ElementalFixedVec<bool> where
    DB: Backend<Intermediate=Intermediate, End=End>
{
    fn from_compact_vector_tree(
        root: &ValueOf<DB>,
        db: &DB,
        len: usize,
        max_len: Option<usize>
    ) -> Result<Self, Error<DB::Error>> {
        let packed = DanglingPackedVector::<DB, GenericArray<u8, typenum::U1>, typenum::U32, typenum::U1>::from_leaked(
            (root.clone(), (len + 7) / 8, max_len.map(|l| (l + 7) / 8))
        );

        let mut bytes = Vec::new();
        for i in 0..packed.len() {
            bytes.push(packed.get(db, i)?[0]);
        }
        let mut ret = Vec::new();
        for i in 0..len {
            ret.push(bytes[i / 8] & (1 << (i % 8)) != 0);
        }
        // TODO: check to make sure rest of the bits are unset.

        Ok(Self(ret))
    }
}

impl<'a, DB, T> IntoCompositeVectorTree<DB> for ElementalFixedVecRef<'a, T> where
    T: IntoTree<DB>,
    DB: Backend<Intermediate=Intermediate, End=End>,
{
    fn into_composite_vector_tree(
        &self,
        db: &mut DB,
        max_len: Option<usize>
    ) -> Result<ValueOf<DB>, Error<DB::Error>> {
        vector_tree(&self.0.iter().map(|value| {
            value.into_tree(db)
        }).collect::<Result<Vec<_>, _>>()?, db, max_len)
    }
}

fn from_composite_vector_tree<T, F, DB>(
    root: &ValueOf<DB>,
    db: &DB,
    len: usize,
    max_len: Option<usize>,
    f: F
) -> Result<ElementalFixedVec<T>, Error<DB::Error>> where
    DB: Backend<Intermediate=Intermediate, End=End>,
    F: Fn(&ValueOf<DB>, &DB) -> Result<T, Error<DB::Error>>
{
    let vector = DanglingVector::<DB>::from_leaked(
        (root.clone(), len, max_len)
    );
    let mut ret = Vec::new();

    for i in 0..len {
        let value = vector.get(db, i)?;
        ret.push(f(&value, db)?);
    }

    Ok(ElementalFixedVec(ret))
}

impl<DB, T: FromTree<DB>> FromCompositeVectorTree<DB> for ElementalFixedVec<T> where
    DB: Backend<Intermediate=Intermediate, End=End>
{
    fn from_composite_vector_tree(
        root: &ValueOf<DB>,
        db: &DB,
        len: usize,
        max_len: Option<usize>
    ) -> Result<Self, Error<DB::Error>> {
        from_composite_vector_tree(root, db, len, max_len, |value, db| T::from_tree(value, db))
    }
}

impl<DB, T> IntoCompactVectorTree<DB> for ElementalFixedVec<T> where
    for<'a> ElementalFixedVecRef<'a, T>: IntoCompactVectorTree<DB>,
    DB: Backend<Intermediate=Intermediate, End=End>
{
    fn into_compact_vector_tree(
        &self,
        db: &mut DB,
        max_len: Option<usize>
    ) -> Result<ValueOf<DB>, Error<DB::Error>> {
        ElementalFixedVecRef(&self.0).into_compact_vector_tree(db, max_len)
    }
}

impl<DB, T> IntoCompositeVectorTree<DB> for ElementalFixedVec<T> where
    for<'a> ElementalFixedVecRef<'a, T>: IntoCompositeVectorTree<DB>,
    DB: Backend<Intermediate=Intermediate, End=End>
{
    fn into_composite_vector_tree(
        &self,
        db: &mut DB,
        max_len: Option<usize>
    ) -> Result<ValueOf<DB>, Error<DB::Error>> {
        ElementalFixedVecRef(&self.0).into_composite_vector_tree(db, max_len)
    }
}