1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
use std::mem;

/// FilterSize bounds the allocated size of a CompressedBitmap.
///
/// The false positive probability for a bloom filter increases as the number of
/// entries increases. This relationship is demonstrated using sha256 hashes as
/// keys for each possible filter configuration below - you should choose a
/// filter size for your expected load level and hash size.
///
/// The value of FilterSize controls the `k` property of the filter: `k =
/// input_length_bytes / FilterSize`.
#[derive(Clone, Copy, Debug)]
pub enum FilterSize {
    /// 1 byte / 8 bits per key results in a bloom filter with a minimum memory
    /// usage of ~4 bytes and a maximum memory usage of 36 bytes.
    ///
    /// The false positive probability using `k=1` (a single byte key per entry)
    /// grows proportionally to the number of entries in the filter:
    ///
    /// ```text
    ///           +--+------------+------------+------------+-----------+------------+-----+
    ///         1 +                                                *                   *   +
    ///           |                                                                        |
    ///           |                                   *                                    |
    ///     P 0.8 +                         *                                              +
    ///     r     |                                                                        |
    ///     o     |                   *                                                    |
    ///     b 0.6 +                                                                        +
    ///     a     |              *                                                         |
    ///     b     |                                                                        |
    ///     i 0.4 +          *                                                             +
    ///     l     |                                                                        |
    ///     i     |        *                                                               |
    ///     t 0.2 +      *                                                                 +
    ///     y     |    **                                                                  |
    ///           |   **                                                                   |
    ///         0 +  **                                                                    +
    ///           +--+------------+------------+------------+-----------+------------+-----+
    ///              0           200          400          600         800         1000     
    ///                                       Number of Entries    
    ///
    ///             The probability of false positives reaches 1-in-2 after 178 entries.
    /// ```
    ///
    KeyBytes1 = 1,

    /// 2 bytes / 16 bits per key results in a bloom filter with a minimum memory
    /// usage of ~1024 bytes and a maximum memory usage of ~8KB when fully
    /// populated.
    ///
    /// When using a sha256 hash (256 bits, or 16x2 byte keys, `k=16`) the
    /// probability of a false positive is:
    ///
    /// ```text
    ///           +--+-------------------+-------------------+------------------+----------+
    ///         1 +                                                                   *    +
    ///           |                                                *                       |
    ///           |                                                                        |
    ///     P 0.8 +                                                                        +
    ///     r     |                                  *                                     |
    ///     o     |                                                                        |
    ///     b 0.6 +                                                                        +
    ///     a     |                                                                        |
    ///     b     |                                                                        |
    ///     i 0.4 +                         *                                              +
    ///     l     |                                                                        |
    ///     i     |                                                                        |
    ///     t 0.2 +                                                                        +
    ///     y     |                                                                        |
    ///           |                  *                                                     |
    ///         0 +  ***** * *   *                                                         +
    ///           +--+-------------------+-------------------+------------------+----------+
    ///              0                 10000               20000              30000         
    ///                                       Number of Entries                             
    ///
    ///            The probability of false positives reaches 1-in-2 after 12,947 entries.
    /// ```
    ///
    KeyBytes2 = 2,

    /// 3 bytes / 24 bits per key results in a bloom filter with a minimum memory
    /// usage of ~262KB bytes and a maximum memory usage of ~2MB when fully
    /// populated.
    ///
    /// When using a sha256 hash (256 bits, or ~11x3 byte keys, `k=~11`) the
    /// probability of a false positive is:
    ///
    /// ```text
    ///         1 +--+---------------+--------------+--------------+---------------+-------+
    ///           |                                                                   *    |
    ///           |                                                                        |
    ///       0.8 +                                                *                       +
    ///     P     |                                                                        |
    ///     r     |                                                                        |
    ///     o     |                                                                        |
    ///     b 0.6 +                                                                        +
    ///     a     |                                  *                                     |
    ///     b     |                                                                        |
    ///     i 0.4 +                                                                        +
    ///     l     |                                                                        |
    ///     i     |                                                                        |
    ///     t 0.2 +                         *                                              +
    ///     y     |                                                                        |
    ///           |                                                                        |
    ///         0 +  ***** * *   *   *                                                     +
    ///           +--+---------------+--------------+--------------+---------------+-------+
    ///              0             2e+06          4e+06          6e+06           8e+06      
    ///                                       Number of Entries                             
    ///
    ///           The probability of false positives reaches 1-in-2 after 4,264,082 entries.
    /// ```
    ///
    KeyBytes3 = 3,

    /// 4 bytes / 32 bits per key results in a bloom filter with a minimum memory
    /// usage of ~67MB and a maximum memory usage of ~603MB when fully
    /// populated.
    ///
    /// When using a sha256 hash (256 bits, or 8x3 byte keys, `k=8`) the
    /// probability of a false positive is:
    ///
    /// ```text
    ///         1 +--+----------+---------+----------+----------+---------+----------+-----+
    ///           |                                                                   *    |
    ///           |                                                                        |
    ///           |                                                *                       |
    ///     P 0.8 +                                                                        +
    ///     r     |                                                                        |
    ///     o     |                                  *                                     |
    ///     b 0.6 +                                                                        +
    ///     a     |                                                                        |
    ///     b     |                                                                        |
    ///     i 0.4 +                                                                        +
    ///     l     |                         *                                              |
    ///     i     |                                                                        |
    ///     t 0.2 +                                                                        +
    ///     y     |                                                                        |
    ///           |                  *                                                     |
    ///         0 +  ***** * *   *                                                         +
    ///           +--+----------+---------+----------+----------+---------+----------+-----+
    ///              0        5e+08     1e+09     1.5e+09     2e+09    2.5e+09     3e+09    
    ///                                       Number of Entries                             
    ///
    ///         The probability of false positives reaches 1-in-2 after 1,336,252,043 entries.
    /// ```
    ///
    KeyBytes4 = 4,

    /// 5 bytes / 32 bits per key results in a bloom filter with a minimum memory
    /// usage of ~17GB and a maximum memory usage of ~1117GB when fully
    /// populated.
    ///
    /// If you actually need this get in touch - I have some ideas for reducing
    /// the memory footprint even further.
    ///
    /// When using a sha256 hash (256 bits, or ~7x3 byte keys, `k=~7`) the
    /// probability of a false positive is:
    ///
    /// ```text
    ///         1 +--+----------------+---------------+----------------+---------------+---+
    ///           |                                                                   *    |
    ///           |                                                                        |
    ///       0.8 +                                                *                       +
    ///     P     |                                                                        |
    ///     r     |                                                                        |
    ///     o     |                                                                        |
    ///     b 0.6 +                                  *                                     +
    ///     a     |                                                                        |
    ///     b     |                                                                        |
    ///     i 0.4 +                                                                        +
    ///     l     |                                                                        |
    ///     i     |                         *                                              |
    ///     t 0.2 +                                                                        +
    ///     y     |                                                                        |
    ///           |                  *                                                     |
    ///         0 +  ***** * *   *                                                         +
    ///           +--+----------------+---------------+----------------+---------------+---+
    ///              0              2e+11           4e+11            6e+11           8e+11  
    ///                                       Number of Entries                             
    ///
    ///        The probability of false positives reaches 1-in-2 after 370,932,038,704 entries.
    /// ```
    ///
    KeyBytes5 = 5,
}

/// CompressedBitmap implements a sparse, 2 level bloom filter - a space
/// efficient, probabilistic set.
///
/// Users of a CompressedBitmap call
/// [`insert_hash`](CompressedBitmap::insert_hash) with deterministic, unique
/// hashes (a fingerprint) of their entries and check the existence of the entry
/// by calling [`contains_hash`](CompressedBitmap::contains_hash).
///
/// ```
/// use bloom2::{CompressedBitmap, FilterSize};
///
/// let mut filter = CompressedBitmap::new(FilterSize::KeyBytes2);
///
/// let data_hashes = vec![
///     "bananas",
///     "batman",
///     "bintang",
/// ];
///
/// for v in data_hashes.iter() {
///     filter.insert_hash(v);
/// }
///
/// assert_eq!(filter.contains_hash("bananas"), true);
/// assert_eq!(filter.contains_hash("apples"), false);
/// ```
///
/// The CompressedBitmap maintains the same false-positive properties and
/// similar performance properties as a normal bloom filter while lazily
/// initialising the backing memory as it is needed, resulting in smaller memory
/// footprints for all except completely loaded filters.
///
/// Insertions are amortised `O(1)` and lookups are always `O(1)`. The backing
/// memory is lazily initialised by growing a [`std::vec::Vec`], therefore it
/// uses the same (undefined) allocation strategy to amortise the expansion of
/// the backing memory - call [`shrink_to_fit`](CompressedBitmap::shrink_to_fit)
/// to reduce the underlying memory allocation to the minimum required.
#[derive(Clone)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct CompressedBitmap {
    key_byte_size: usize,
    block_map: Vec<usize>,
    bitmap: Vec<usize>,
}

impl CompressedBitmap {
    /// Initialises a new, empty bloom filter configured to consume hashes in
    /// chunks of `key_byte_size` number of bytes to use as keys.
    pub fn new(key_byte_size: FilterSize) -> Self {
        // Calculate the capacity of the bitvec.
        //
        // This is the size of a u32 (8) to the power of the size of the keys in
        // bytes used to index it. This results in:
        //
        // 		| Key Bytes | Max Index  | Filter Size        |
        // 		|-----------|------------|--------------------|
        // 		| 1         | 256        | 32                 |
        // 		| 2         | 65536      | 8192 (~8KB)        |
        // 		| 3         | 16777216   | 2097152 (~2MB)     |
        // 		| 4         | 4294967296 | 536870912 (~536MB) |
        // 		| 5         | 1.0995e+12 | ~1100GB            |
        //
        let max_index = (2 as usize).pow(8 * key_byte_size as u32);

        // Calculate how many instances of usize (blocks) are needed to hold
        // max_index number of bits.
        let blocks = index_for_key(max_index);

        // Allocate a block map.
        //
        // The block map contains bitmaps with 1 bits indicating the usize for
        // that key has been allocated.
        let mut block_map = Vec::new();
        block_map.resize(index_for_key(blocks), 0);

        if blocks % (mem::size_of::<usize>() * 8) != 0 {
            block_map.push(0);
        }

        CompressedBitmap {
            key_byte_size: key_byte_size as usize,
            bitmap: Vec::new(),
            block_map,
        }
    }

    /// Reduces the allocated memory usage of the filter to the minimum required
    /// for the current filter contents.
    ///
    /// This is useful to minimise the memory footprint of a populated,
    /// read-only CompressedBitmap.
    ///
    /// See [`Vec::shrink_to_fit`](std::vec::Vec::shrink_to_fit).
    pub fn shrink_to_fit(&mut self) {
        self.bitmap.shrink_to_fit()
    }

    /// Resets the state of the filter.
    ///
    /// An efficient way to remove all elements in the filter to allow it to be
    /// reused. Does not shrink the allocated backing memory, instead retaining
    /// the capacity to avoid reallocations.
    pub fn clear(&mut self) {
        for block in self.block_map.iter_mut() {
            *block = 0;
        }
        self.bitmap.truncate(0);
    }

    /// Inserts hash into the filter, chunking it into the configured key size.
    ///
    /// Calling `insert_hash` with a hash length greater than the configured key
    /// size effectively increases the "hash" count, or `k` property of the
    /// filter.
    pub fn insert_hash<T: AsRef<[u8]>>(&mut self, hash: T) {
        for chunk in hash.as_ref().chunks(self.key_byte_size) {
            let mut key = 0;
            for b in chunk.iter() {
                key <<= 8;
                key |= *b as usize;
            }

            // First compute the index of the bit in the bitmap if it was fully
            // populated.
            //
            //
            //     Bitmap:                │
            //                            ▼
            //       ┌───┬───┬───┬───┐  ┌───┬───┬───┬───┐  ┌───┬───┬───┬───┐
            //       │ 0 │ 0 │ 0 │ 0 │  │ 0 │ 0 │ 0 │ 0 │  │ 0 │ 0 │ 0 │ 0 │
            //       └───┴───┴───┴───┘  └───┴───┴───┴───┘  └───┴───┴───┴───┘
            //            Block 0            Block 1            Block 2
            //
            //
            // Next figure out which block (usize) this bitmap_index is part of.
            //
            //	  Bitmap:                      │
            //	                      ┌ ─ ─ ─ ─ ─ ─ ─ ─ ┐
            //	    ┌───┬───┬───┬───┐  ┌───┬───┬───┬───┐  ┌───┬───┬───┬───┐
            //	    │ 0 │ 0 │ 0 │ 0 │  │ 0 │ 0 │ 0 │ 0 │  │ 0 │ 0 │ 0 │ 0 │
            //	    └───┴───┴───┴───┘  └───┴───┴───┴───┘  └───┴───┴───┴───┘
            //	         Block 0            Block 1            Block 2
            //
            let block_index = index_for_key(key);

            // Because the blocks are initialised lazily to provide the sparse
            // filter behaviour, there may be no block yet allocated for this
            // bitmap index. The block_map data structure is itself bitmap with
            // a 1 bit indicating the block has been allocated.
            //
            // Check which usize in the block_map contains the bit representing
            // the block.
            //
            //            Block Map:
            //
            //                      ┌───┬───┬───┬───┐
            //                   0: │ 0 │ 1 │ 1 │ 0 │
            //                      └───┴───┴───┴───┘
            //
            //                      ┌───┬───┬───┬───┐
            //                   1: │ 1 │ 0 │ 1 │ 0 │
            //                      └─▲─┴───┴───┴───┘
            //     block_index ━━━━━━━┛
            //                      ┌───┬───┬───┬───┐
            //                   2: │ 0 │ 0 │ 1 │ 1 │
            //                      └───┴───┴───┴───┘
            //
            let block_map_index = index_for_key(block_index);
            let block_map_bitmask = bitmask_for_key(block_index);

            // The block has been allocated if the block usize contains a 1 bit.
            //
            // Because blocks are lazily initialised, block n may not be at
            // block_map[n] if prior blocks have not been initialised. To
            // calculate the offset of block n, the number of 1's in the
            // block_map before bit n. This operation is very fast on modern
            // hardware thanks to the POPCNT instruction.
            //
            //            Block Map:
            //
            //                          ┌───┬───┐
            //                        0 │ 1 │ 1 │ 0
            //                          └─△─┴─△─┘
            //                            └───┼────────── popcount()
            //                      ┏━━━┓   ┌─▽─┐
            //                      ┃ 1 ┃ 0 │ 1 │ 0
            //                      ┗━▲━┛   └───┘
            //     block_index ━━━━━━━┛
            //
            //
            // In the above example, the popcount() is 3, and the block is the
            // 3+1=4th block in bitmap. However as the arrays are zero-indexed,
            // the +1 is omitted to adjust from the position 4, to index 3.

            // Count the ones in the full blocks
            let mut offset: usize = 0;
            for i in 0..block_map_index {
                offset += self.block_map[i].count_ones() as usize;
            }

            // Mask out the higher bits in the block map to count the populated
            // blocks before block_index
            let mask = block_map_bitmask - 1;
            offset += (self.block_map[block_map_index] & mask).count_ones() as usize;

            // Offset now contains the index in bitmap at which block_index can
            // be found.
            //
            // Because the blocks are lazily initialised, there may not yet be a
            // block for block_index.
            //
            // Read the usize at block_map_index, and check the bit for
            // block_index.
            if self.block_map[block_map_index] & block_map_bitmask == 0 {
                // The block does not exist, insert it into the bitmap at
                // block_index.
                if offset >= self.bitmap.len() {
                    self.bitmap.push(bitmask_for_key(key));
                } else {
                    // If offset is < bitmap.len() this will require moving all
                    // the elements at offset+1 one slot to the right to make
                    // room for the new element.
                    //
                    // For bitmaps with large numbers of elements to the right
                    // of offset, this can become expensive.
                    self.bitmap.insert(offset, bitmask_for_key(key));
                }
                self.block_map[block_map_index] |= block_map_bitmask;
                continue;
            }

            // Otherwise the block map indicates the block is already allocated
            self.bitmap[offset as usize] |= bitmask_for_key(key);
        }
    }

    /// Checks if hash exists in the filter.
    ///
    /// If `contains_hash` returns true, `hash` has **probably** been inserted
    /// previously. If `contains_hash` returns false, `hash` has **definitely
    /// not been inserted** into the filter.
    pub fn contains_hash<T: AsRef<[u8]>>(&self, hash: T) -> bool {
        for chunk in hash.as_ref().chunks(self.key_byte_size) {
            let mut key = 0;
            for b in chunk.iter() {
                key <<= 8;
                key |= *b as usize;
            }

            let block_index = index_for_key(key);
            let block_map_index = index_for_key(block_index);
            let block_map_bitmask = bitmask_for_key(block_index);

            if self.block_map[block_map_index] & block_map_bitmask == 0 {
                return false;
            }

            let mut offset = 0;
            for i in 0..block_map_index {
                offset += self.block_map[i].count_ones();
            }

            let mask = block_map_bitmask - 1;
            offset += (self.block_map[block_map_index] & mask).count_ones();

            if self.bitmap[offset as usize] & bitmask_for_key(key) == 0 {
                return false;
            }
        }

        return true;
    }
}

#[inline(always)]
fn bitmask_for_key(key: usize) -> usize {
    1 << (key % (mem::size_of::<usize>() * 8))
}

#[inline(always)]
fn index_for_key(key: usize) -> usize {
    key / (mem::size_of::<usize>() * 8)
}

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck_macros::quickcheck;

    fn matches_only(bloom: &CompressedBitmap, hash: [u8; 2]) {
        for i in 0..255 as u8 {
            for j in 0..255 as u8 {
                let lookup = [i, j];
                if (i == hash[0] || i == hash[1]) && (j == hash[0] || j == hash[1]) {
                    continue;
                }
                assert!(
                    !bloom.contains_hash(lookup),
                    "expected contains_hash false, got true for key [{}, {}]",
                    i,
                    j
                );
            }
        }
    }

    #[test]
    fn test_bananas() {
        let mut filter = CompressedBitmap::new(FilterSize::KeyBytes2);
        filter.insert_hash("bananas");
        assert_eq!(filter.contains_hash("bananas"), true);
    }

    #[test]
    #[cfg(target_pointer_width = "64")]
    fn construct_key_1_64bit() {
        let b = CompressedBitmap::new(FilterSize::KeyBytes1);

        // 1 byte key -> 256 values -> 4 x 64bits -> 0.0625 blocks rounded to 1
        assert_eq!(b.block_map.len(), 1);
        assert_eq!(b.bitmap.len(), 0);
    }

    #[test]
    #[cfg(target_pointer_width = "32")]
    fn construct_key_1_32bit() {
        let b = CompressedBitmap::new(FilterSize::KeyBytes1);

        // 1 byte key -> 256 values -> 8 x 32bits -> 0.09375 blocks rounded to 1
        assert_eq!(b.block_map.len(), 1);
        assert_eq!(b.bitmap.len(), 0);
    }

    #[test]
    #[cfg(target_pointer_width = "64")]
    fn construct_key_2_64bit() {
        let b = CompressedBitmap::new(FilterSize::KeyBytes2);

        // 2 byte key -> 65,536 values -> 1024 x 64bits -> 16 blocks
        assert_eq!(b.block_map.len(), 16);
        assert_eq!(b.bitmap.len(), 0);
    }

    #[test]
    #[cfg(target_pointer_width = "32")]
    fn construct_key_2_32bit() {
        let b = CompressedBitmap::new(FilterSize::KeyBytes2);

        // 2 byte key -> 65,536 values -> 2048 x 32bits -> 64 blocks
        assert_eq!(b.block_map.len(), 64);
        assert_eq!(b.bitmap.len(), 0);
    }

    #[test]
    #[cfg(target_pointer_width = "64")]
    fn construct_key_3_64bit() {
        let b = CompressedBitmap::new(FilterSize::KeyBytes3);

        // 3 byte key -> 16,777,216 values -> 262,144 x 64bits -> 4,096 blocks
        assert_eq!(b.block_map.len(), 4096);
        assert_eq!(b.bitmap.len(), 0);
    }

    #[test]
    #[cfg(target_pointer_width = "32")]
    fn construct_key_2_32bit() {
        let b = CompressedBitmap::new(FilterSize::KeyBytes3);

        // 3 byte key -> 16,777,216 values -> 524,288 x 64bits -> 16,384 blocks
        assert_eq!(b.block_map.len(), 16_384);
        assert_eq!(b.bitmap.len(), 0);
    }

    #[test]
    fn contains_inserted_value() {
        let mut b = CompressedBitmap::new(FilterSize::KeyBytes2);
        let hash = [1, 2];

        b.insert_hash(hash);
        assert!(b.contains_hash(hash));

        matches_only(&b, hash);

        // Must not contain any empty blocks
        for block in b.bitmap {
            assert_ne!(block, 0);
        }
    }

    #[test]
    fn contains_inserted_value_short_key() {
        let mut b = CompressedBitmap::new(FilterSize::KeyBytes2);
        let hash = [42]; // Shorter than the specified key size

        b.insert_hash(hash);
        assert!(b.contains_hash(hash));

        // Must not contain any empty blocks
        for block in b.bitmap {
            assert_ne!(block, 0);
        }
    }

    #[test]
    fn min_max_values() {
        for hash in vec![[0, 0], [255, 255]] {
            let mut b = CompressedBitmap::new(FilterSize::KeyBytes2);
            b.insert_hash(hash);
            assert!(b.contains_hash(hash));
            matches_only(&b, hash);
        }
    }

    #[test]
    fn clear() {
        let mut b = CompressedBitmap::new(FilterSize::KeyBytes2);
        let hash = [42]; // Shorter than the specified key size

        b.insert_hash(hash);
        assert!(b.contains_hash(hash));

        b.clear();
        assert_eq!(b.contains_hash(hash), false);

        // Must not contain any blocks
        for block in b.block_map {
            assert_eq!(block, 0);
        }

        assert_eq!(b.bitmap.len(), 0);
        assert_ne!(b.bitmap.capacity(), 0);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn serde() {
        let mut b = CompressedBitmap::new(FilterSize::KeyBytes2);
        let hash = [1, 2];

        b.insert_hash(hash);
        assert!(b.contains_hash(hash));

        let encoded = serde_json::to_string(&b).unwrap();
        let decoded: CompressedBitmap = serde_json::from_str(&encoded).unwrap();

        assert!(decoded.contains_hash(hash));
    }

    #[quickcheck]
    fn prop_inserted_hash_is_found(mut xs: Vec<u8>) -> bool {
        let mut b = CompressedBitmap::new(FilterSize::KeyBytes1);
        let hash = match xs.pop() {
            Some(v) => v,
            None => return true,
        };

        println!("Using hash {}", hash);

        b.insert_hash(&[hash]);
        if b.contains_hash(&[hash]) == false {
            return false;
        };

        // Must not contain any empty blocks
        for block in &b.bitmap {
            assert_ne!(*block, 0);
        }

        return !xs
            .iter()
            .filter(|v| hash != **v)
            .fold(false, |acc, v| acc || b.contains_hash(&[*v]));
    }
}