1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
//! # block-pseudorand
//!
//! This crate allows multi-threaded creation of pseudorandom `Vec<T>`'s of arbitrary length. It does this
//! by generating arbitrary byte vectors randomly and transmuting to the provided type.
//!
//! <p style="background:rgba(255,181,77,0.16);padding:0.75em;">
//! <strong>Warning:</strong> This is wildly unsafe for some types as it does not uphold any invariants your type might expect.
//! Only use this crate if your type can be safely generated from completely arbitrary bytes.
//! Generally, this means your type should consist of nothing but primitive numbers such as u32, i64, or f32.
//! </p>
//!
//! ## Notes
//!
//!  - Generated data is not guaranteed to be cryptographically secure
//!  - Output can be deterministic if you provide a seed
//!  - This is very unsafe for certain types, see the warning above
//!
//! ## Use cases
//!
//! If you need a lot of random numbers quickly for something non-production critical like unit tests, this may be
//! a good candidate. Otherwise, if you are planning to use this at runtime, or with types that are non-numeric
//! or otherwise cannot be created from arbitrary bytes, I would recommend you to choose another, safer crate.
//!
//! ## Usage
//!
//! If you are certain the above warnings do not apply to the type you are generating, you can use this library like so:
//!
//! ### Without Seed
//!
//! ```rust
//! use block_pseudorand::block_rand;
//!
//! let random_data: Vec<u64> = block_rand(128);
//!
//! assert_eq!(random_data.len(), 128);
//! ```
//!
//! ### With Seed
//!
//! ```rust
//! use block_pseudorand::block_rand_with_seed;
//!
//! // Populate this seed as you wish
//! let seed = [0u8; 32];
//! let random_data: Vec<u64> = block_rand_with_seed(128, &seed);
//!
//! assert_eq!(random_data.len(), 128);
//! ```

use std::mem::size_of;
use chiapos_chacha8::ChaCha8;
use nanorand::{Rng, WyRand};

#[inline]
const fn cdiv(a: usize, b: usize) -> usize {
    (a + b - 1) / b
}

/// Randomly populates a `Vec` of data based upon a provided seed.
///
/// Usage:
///
/// ```rust
/// use block_pseudorand::block_rand_with_seed;
///
/// let seed = [0u8; 32];
/// let random_data: Vec<u32> = block_rand_with_seed(128, &seed);
///
/// assert_eq!(random_data.len(), 128);
/// ```
pub fn block_rand_with_seed<T: Copy>(count: usize, seed: &[u8; 32]) -> Vec<T> {
    let expected_len_bytes = count * size_of::<T>();
    let gen_len = cdiv(expected_len_bytes, 64) * 64;

    let mut bytes = Vec::with_capacity(gen_len);
    unsafe {
        bytes.set_len(gen_len);
    };

    let chacha8 = ChaCha8::new_from_256bit_key(seed);
    chacha8.get_keystream(0, &mut bytes);

    bytes.truncate(expected_len_bytes);

    let mut out = std::mem::ManuallyDrop::new(bytes);

    unsafe {
        Vec::from_raw_parts(
            out.as_mut_ptr() as *mut T,
            count,
            count
        )
    }
}

/// Randomly populates a `Vec` of data based upon a randomly chosen seed.
///
/// Usage:
///
/// ```rust
/// use block_pseudorand::block_rand;
///
/// let random_data: Vec<u32> = block_rand(128);
///
/// assert_eq!(random_data.len(), 128);
/// ```
pub fn block_rand<T: Copy>(count: usize) -> Vec<T> {
    let mut rng = WyRand::new();
    let mut key = [0u8; 32];
    for v in key.iter_mut() {
        *v = rng.generate();
    }

    block_rand_with_seed(count, &key)
}

#[cfg(test)]
mod tests {
    use crate::*;

    fn test_count<T: Copy>(count: usize) {
        let rand_data: Vec<T> = block_rand(count);
        assert_eq!(rand_data.len(), count);
    }

    fn test_medley<T: Copy>() {
        test_count::<T>(0);
        test_count::<T>(1);
        test_count::<T>(2);
        test_count::<T>(3);
        test_count::<T>(10_000);
        test_count::<T>(1_000_000);
        test_count::<T>(10_000_000);
    }

    #[test]
    fn u8_works() {
        test_medley::<u8>();
    }

    #[test]
    fn u16_works() {
        test_medley::<u16>();
    }

    #[test]
    fn u32_works() {
        test_medley::<u32>();
    }

    #[test]
    fn u64_works() {
        test_medley::<u64>();
    }

    #[test]
    fn u128_works() {
        test_medley::<u128>();
    }

    #[test]
    fn usize_works() {
        test_medley::<usize>();
    }

    #[test]
    fn i8_works() {
        test_medley::<i8>();
    }

    #[test]
    fn i16_works() {
        test_medley::<i16>();
    }

    #[test]
    fn i32_works() {
        test_medley::<i32>();
    }

    #[test]
    fn i64_works() {
        test_medley::<i64>();
    }

    #[test]
    fn i128_works() {
        test_medley::<i128>();
    }

    #[test]
    fn isize_works() {
        test_medley::<isize>();
    }

    #[test]
    fn f32_works() {
        test_medley::<f32>();
    }

    #[test]
    fn f64_works() {
        test_medley::<f64>();
    }
}