1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// FIXME: Fix and remove eventally
#![allow(clippy::result_unit_err)]

use alloc::{vec, vec::Vec};
use core::marker::PhantomData;
use core::ops::{Index, IndexMut};

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::iters::{BlockIter, BlockIterMut, EachIter, EachIterMut, RowMajorIter, RowMajorIterMut};
use crate::{BlockDim, Coords};

/// A fixed-size 2D array with a blocked memory representation.
///
/// See [crate-level documentation][crate] for general usage info.
///
/// If your dimensions are not a multiple of the block size, you can use the helper function
/// [`BlockDim::round_up_to_valid`] to generate larger, valid dimensions.
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serde", serde(bound(serialize = "T: Clone + Serialize")))]
#[cfg_attr(feature = "serde", serde(try_from = "serde_hack::ShadowBlockGrid<T>"))]
#[cfg_attr(feature = "serde", serde(into = "serde_hack::ShadowBlockGrid<T>"))]
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct BlockGrid<T, B: BlockDim> {
    rows: usize,
    cols: usize,
    col_blocks: usize,
    buf: Vec<T>,
    _phantom: PhantomData<B>,
}

/// A view of a 2D block contiguous in memory.
///
/// Can be obtained via [`BlockIter`], which is created by calling [`BlockGrid::block_iter`].
#[derive(Clone, Copy, Debug)]
pub struct Block<'a, T, B: BlockDim> {
    block_coords: Coords,
    arr: &'a [T],
    _phantom: PhantomData<B>,
}

/// A mutable view of a 2D block contiguous in memory.
///
/// Can be obtained via [`BlockIterMut`], which is created by calling [`BlockGrid::block_iter_mut`].
#[derive(Debug)]
pub struct BlockMut<'a, T, B: BlockDim> {
    block_coords: Coords,
    arr: &'a mut [T],
    _phantom: PhantomData<B>,
}

impl<T, B: BlockDim> BlockGrid<T, B> {
    /// Constructs a `BlockGrid<T, B>` by consuming a [`Vec<T>`].
    ///
    /// The ordering of the memory is taken as is in the vector.
    ///
    /// # Errors
    ///
    /// If invalid dimensions, either because `rows` and `cols` do not divide evenly into the block
    /// size `B` or the length of `elems` does not match `rows * cols`.
    pub fn from_raw_vec(rows: usize, cols: usize, elems: Vec<T>) -> Result<Self, ()> {
        if !Self::valid_size(rows, cols) || rows * cols != elems.len() {
            return Err(());
        }
        Ok(Self {
            rows,
            cols,
            col_blocks: cols / B::WIDTH,
            buf: elems,
            _phantom: PhantomData,
        })
    }

    /// Converts a `BlockGrid<T, B>` to a [`Vec<T>`] in memory order.
    #[inline]
    pub fn take_raw_vec(self) -> Vec<T> {
        self.buf
    }

    /// Returns the nuumber of rows.
    #[inline]
    pub fn rows(&self) -> usize {
        self.rows
    }

    /// Returns the number of columns.
    #[inline]
    pub fn cols(&self) -> usize {
        self.cols
    }

    /// Returns the number of elements.
    #[inline]
    pub fn size(&self) -> usize {
        self.rows() * self.cols()
    }

    /// Returns the number of blocks in the vertical direction.
    #[inline]
    pub fn row_blocks(&self) -> usize {
        self.rows / B::WIDTH
    }

    /// Returns the number of blocks in the horizontal direction.
    #[inline]
    pub fn col_blocks(&self) -> usize {
        self.col_blocks
    }

    /// Returns the total number of blocks.
    #[inline]
    pub fn blocks(&self) -> usize {
        self.row_blocks() * self.col_blocks()
    }

    /// Returns `true` if the given coordinates are valid.
    #[inline]
    pub fn contains(&self, (row, col): Coords) -> bool {
        row < self.rows && col < self.cols
    }

    /// Returns a reference to the element at the given coordinates, or [`None`] if they are
    /// out-of-bounds.
    #[inline]
    pub fn get(&self, coords: Coords) -> Option<&T> {
        if !self.contains(coords) {
            return None;
        }
        // SAFETY: `coords` is a valid index
        Some(unsafe { self.get_unchecked(coords) })
    }

    /// Returns a mutable reference to the element at the given coordinates, or [`None`] if they
    /// are out-of-bounds.
    #[inline]
    pub fn get_mut(&mut self, coords: Coords) -> Option<&mut T> {
        if !self.contains(coords) {
            return None;
        }
        // SAFETY: `coords` is a valid index
        Some(unsafe { self.get_unchecked_mut(coords) })
    }

    /// Returns a reference to the element at the given coordinates, without bounds checking.
    ///
    /// # Safety
    ///
    /// Calling this method with out-of-bounds coordinates is *undefined-behaviour*.
    #[inline]
    pub unsafe fn get_unchecked(&self, coords: Coords) -> &T {
        debug_assert!(self.contains(coords));
        let ind = self.calc_index(coords);
        self.buf.get_unchecked(ind)
    }

    /// Returns a mutable reference to the element at the given coordinates, without bounds
    /// checking.
    ///
    /// # Safety
    ///
    /// Calling this method with out-of-bounds coordinates is *undefined-behaviour*.
    #[inline]
    pub unsafe fn get_unchecked_mut(&mut self, coords: Coords) -> &mut T {
        debug_assert!(self.contains(coords));
        let ind = self.calc_index(coords);
        self.buf.get_unchecked_mut(ind)
    }

    /// Returns all elements as a slice in memory order.
    #[inline]
    pub fn raw(&self) -> &[T] {
        &self.buf
    }

    /// Returns all elements as a mutable slice in memory order.
    #[inline]
    pub fn raw_mut(&mut self) -> &mut [T] {
        &mut self.buf
    }

    /// Returns an iterator over all the elements in memory order.
    ///
    /// If you wanna visit each element arbitrarily, this would be the best way. If you also need
    /// coordinates while iterating, follow up with a chained [`.coords()`][coords] call.
    ///
    /// [coords]: crate::CoordsIterator::coords()
    #[inline]
    pub fn each_iter(&self) -> EachIter<'_, T, B> {
        EachIter::new(self)
    }

    /// Returns a mutable iterator over all the elements in memory order.
    ///
    /// If you wanna mutably visit each element arbitrarily, this would be the best way. If you
    /// also need coordinates while iterating, follow up with a chained [`.coords()`][coords] call.
    ///
    /// [coords]: crate::CoordsIterator::coords()
    #[inline]
    pub fn each_iter_mut(&mut self) -> EachIterMut<'_, T, B> {
        EachIterMut::new(self)
    }

    /// Returns an iterator over all blocks in memory order, yielding [`Block`]s.
    ///
    /// If you need the block coordinates while iterating, follow up with a chained
    /// [`.coords()`][coords] call. In this case, note that the 2D coordinates yielded are of the
    /// actual entire block. If you instead need the coordinates of the first (top-left) element
    /// in the block, see [`Block::starts_at`].
    ///
    /// [coords]: crate::CoordsIterator::coords()
    #[inline]
    pub fn block_iter(&self) -> BlockIter<'_, T, B> {
        BlockIter::new(self)
    }

    /// Returns a mutable iterator over all blocks in memory order, yielding [`BlockMut`]s.
    ///
    /// If you need the block coordinates while iterating, follow up with a chained
    /// [`.coords()`][coords] call. In this case, note that the 2D coordinates yielded are of the
    /// actual entire block. If you instead need the coordinates of the first (top-left) element
    /// in the block, see [`BlockMut::starts_at`].
    ///
    /// [coords]: crate::CoordsIterator::coords()
    #[inline]
    pub fn block_iter_mut(&mut self) -> BlockIterMut<'_, T, B> {
        BlockIterMut::new(self)
    }

    /// Returns an iterator over all the elements in [row-major order][row_major].
    ///
    /// This ordering is what you're probably used to with usual 2D arrays. This method may be
    /// useful for converting between array types or general IO. If you also need the coordinates
    /// while iterating, follow up with a chained [`.coords()`][coords] call.
    ///
    /// [row_major]: https://en.wikipedia.org/wiki/Row-_and_column-major_order
    /// [coords]: crate::CoordsIterator::coords()
    #[inline]
    pub fn row_major_iter(&self) -> RowMajorIter<'_, T, B> {
        RowMajorIter::new(self)
    }

    /// Returns an mutable iterator over all the elements in [row-major order][row_major].
    ///
    /// If you also need the coordinates while iterating, follow up with a chained
    /// [`.coords()`][coords] call.
    ///
    /// [row_major]: https://en.wikipedia.org/wiki/Row-_and_column-major_order
    /// [coords]: crate::CoordsIterator::coords()
    #[inline]
    pub fn row_major_iter_mut(&mut self) -> RowMajorIterMut<'_, T, B> {
        RowMajorIterMut::new(self)
    }

    /// Returns `true` if `rows` and `cols` form a valid sized `BlockGrid<T, B>`.
    fn valid_size(rows: usize, cols: usize) -> bool {
        rows > 0 && cols > 0 && rows % B::WIDTH == 0 && cols % B::WIDTH == 0
    }

    /// Returns the 1D memory index calculated from 2D coordinates.
    fn calc_index(&self, (row, col): Coords) -> usize {
        // Get block
        let (b_row, b_col) = (row / B::WIDTH, col / B::WIDTH);
        let block_ind = B::AREA * (self.col_blocks() * b_row + b_col);
        // Offset within block
        let (s_row, s_col) = (row % B::WIDTH, col % B::WIDTH);
        let sub_ind = B::WIDTH * s_row + s_col;
        block_ind + sub_ind
    }
}

impl<T: Clone, B: BlockDim> BlockGrid<T, B> {
    /// Constructs a `BlockGrid<T, B>` by filling with a single element.
    ///
    /// # Errors
    ///
    /// If  `rows` and `cols` do not divide evenly into the block size `B`.
    pub fn filled(rows: usize, cols: usize, elem: T) -> Result<Self, ()> {
        if !Self::valid_size(rows, cols) {
            return Err(());
        }
        Ok(Self {
            rows,
            cols,
            col_blocks: cols / B::WIDTH,
            buf: vec![elem; rows * cols],
            _phantom: PhantomData,
        })
    }

    /// Constructs a `BlockGrid<T, B>` from a slice in [row-major order][row_major].
    ///
    /// This method may be useful for converting from a typical 2D array.
    ///
    /// # Errors
    ///
    /// If invalid dimensions, either because `rows` and `cols` do not divide evenly into the block
    /// size `B` or the length of `elems` does not match `rows * cols`.
    ///
    /// [row_major]: https://en.wikipedia.org/wiki/Row-_and_column-major_order
    pub fn from_row_major(rows: usize, cols: usize, elems: &[T]) -> Result<Self, ()> {
        Self::from_array_index_helper(rows, cols, elems, |row, col| cols * row + col)
    }

    /// Constructs a `BlockGrid<T, B>` from a slice in [column-major order][col_major].
    ///
    /// 2D arrays are not usually stored like this, but occasionally they are.
    ///
    /// # Errors
    ///
    /// If invalid dimensions, either because `rows` and `cols` do not divide evenly into the block
    /// size `B` or the length of `elems` does not match `rows * cols`.
    ///
    /// [col_major]: https://en.wikipedia.org/wiki/Row-_and_column-major_order
    pub fn from_col_major(rows: usize, cols: usize, elems: &[T]) -> Result<Self, ()> {
        Self::from_array_index_helper(rows, cols, elems, |row, col| rows * col + row)
    }

    /// Helper method to convert from a differently ordered array to a `BlockGrid<T, B>`.
    fn from_array_index_helper(
        rows: usize,
        cols: usize,
        elems: &[T],
        calc_index: impl Fn(usize, usize) -> usize,
    ) -> Result<Self, ()> {
        if !Self::valid_size(rows, cols) || rows * cols != elems.len() {
            return Err(());
        }
        let mut grid = Self {
            rows,
            cols,
            col_blocks: cols / B::WIDTH,
            buf: Vec::with_capacity(rows * cols),
            _phantom: PhantomData,
        };
        // Iterate in memory order by index and pull values from `elems`
        for bi in (0..grid.rows()).step_by(B::WIDTH) {
            for bj in (0..grid.cols()).step_by(B::WIDTH) {
                for si in 0..B::WIDTH {
                    for sj in 0..B::WIDTH {
                        let (row, col) = (bi + si, bj + sj);
                        let ind = calc_index(row, col);
                        // There's no 'simple' way to do this without `Clone`,
                        // because `elems` can't be easily drained out of order.
                        grid.buf.push(elems[ind].clone());
                    }
                }
            }
        }
        debug_assert_eq!(grid.buf.len(), grid.size());
        Ok(grid)
    }
}

impl<T: Clone + Default, B: BlockDim> BlockGrid<T, B> {
    /// Constructs a `BlockGrid<T, B>` by filling with the default value of `T`.
    ///
    /// # Errors
    ///
    /// If  `rows` and `cols` do not divide evenly into the block size `B`.
    pub fn new(rows: usize, cols: usize) -> Result<Self, ()> {
        Self::filled(rows, cols, T::default())
    }
}

impl<T, B: BlockDim> Index<Coords> for BlockGrid<T, B> {
    type Output = T;

    #[inline]
    fn index(&self, coords: Coords) -> &Self::Output {
        self.get(coords).expect("Index out of bounds")
    }
}

impl<T, B: BlockDim> IndexMut<Coords> for BlockGrid<T, B> {
    #[inline]
    fn index_mut(&mut self, coords: Coords) -> &mut Self::Output {
        self.get_mut(coords).expect("Index out of bounds")
    }
}

impl<'a, T, B: BlockDim> Block<'a, T, B> {
    /// Constructs a `Block<'a, T, B>` from an array slice.
    ///
    /// # Safety
    ///
    /// `block_coords` *must* be valid and `arr` *must* be of length `B::AREA`.
    pub(crate) unsafe fn new(block_coords: Coords, arr: &'a [T]) -> Self {
        debug_assert_eq!(arr.len(), B::AREA);
        Self {
            block_coords,
            arr,
            _phantom: PhantomData,
        }
    }

    /// Returns the coordinates of the entire block.
    ///
    /// Block coordinates mean that the `(i, j)` refers to the `i`-th *row of blocks* and the
    /// `j`-th block in that row. If you need the coordinates of the first (top-left) element,
    /// use [`starts_at`] instead.
    ///
    /// [`starts_at`]: Self::starts_at
    #[inline]
    pub fn coords(&self) -> Coords {
        self.block_coords
    }

    /// Returns the coordinates of the first (top-left) element in the block.
    #[inline]
    pub fn starts_at(&self) -> Coords {
        let (b_row, b_col) = self.block_coords;
        (B::WIDTH * b_row, B::WIDTH * b_col)
    }

    /// Returns `true` if the given coordinates are valid.
    #[inline]
    pub fn contains(&self, (row, col): Coords) -> bool {
        row < B::WIDTH && col < B::WIDTH
    }

    /// Returns a reference to the element at the given coordinates, or [`None`] if they are
    /// out-of-bounds.
    #[inline]
    pub fn get(&self, coords: Coords) -> Option<&T> {
        if !self.contains(coords) {
            return None;
        }
        // SAFETY: `coords` is a valid index
        Some(unsafe { self.get_unchecked(coords) })
    }

    /// Returns a reference to the element at the given coordinates, without bounds checking.
    ///
    /// # Safety
    ///
    /// Calling this method with out-of-bounds coordinates is *undefined-behaviour*.
    #[inline]
    pub unsafe fn get_unchecked(&self, coords: Coords) -> &T {
        debug_assert!(self.contains(coords));
        self.arr.get_unchecked(self.calc_index(coords))
    }

    /// Returns all elements in block as a slice in memory order.
    #[inline]
    pub fn raw(&self) -> &[T] {
        self.arr
    }

    /// Returns the 1D memory index calculated from 2D coordinates.
    fn calc_index(&self, (row, col): Coords) -> usize {
        B::WIDTH * row + col
    }
}

impl<'a, T, B: BlockDim> Index<Coords> for Block<'a, T, B> {
    type Output = T;

    #[inline]
    fn index(&self, coords: Coords) -> &Self::Output {
        self.get(coords).expect("Index out of bounds")
    }
}

impl<'a, T, B: BlockDim> BlockMut<'a, T, B> {
    /// Constructs a `BlockMut<'a, T, B>` from an array slice.
    ///
    /// # Safety
    ///
    /// `block_coords` *must* be valid and `arr` *must* be of length `B::AREA`.
    pub(crate) unsafe fn new(block_coords: Coords, arr: &'a mut [T]) -> Self {
        debug_assert_eq!(arr.len(), B::AREA);
        Self {
            block_coords,
            arr,
            _phantom: PhantomData,
        }
    }

    /// Returns the coordinates of the entire block.
    ///
    /// Block coordinates mean that the `(i, j)` refers to the `i`-th *row of blocks* and the
    /// `j`-th block in that row. If you need the coordinates of the first (top-left) element,
    /// use [`starts_at`] instead.
    ///
    /// [`starts_at`]: Self::starts_at
    #[inline]
    pub fn coords(&self) -> Coords {
        self.block_coords
    }

    /// Returns of the coordinates of the first (top-left) element in the block.
    #[inline]
    pub fn starts_at(&self) -> Coords {
        let (b_row, b_col) = self.block_coords;
        (B::WIDTH * b_row, B::WIDTH * b_col)
    }

    /// Returns `true` if the given coordinates are valid.
    #[inline]
    pub fn contains(&self, (row, col): Coords) -> bool {
        row < B::WIDTH && col < B::WIDTH
    }

    /// Returns a reference to the element at the given coordinates, or [`None`] if they are
    /// out-of-bounds.
    #[inline]
    pub fn get(&self, coords: Coords) -> Option<&T> {
        if !self.contains(coords) {
            return None;
        }
        // SAFETY: `coords` is a valid index
        Some(unsafe { self.get_unchecked(coords) })
    }

    /// Returns a mutable reference to the element at the given coordinates, or [`None`] if they
    /// are out-of-bounds.
    #[inline]
    pub fn get_mut(&mut self, coords: Coords) -> Option<&mut T> {
        if !self.contains(coords) {
            return None;
        }
        // SAFETY: `coords` is a valid index
        Some(unsafe { self.get_unchecked_mut(coords) })
    }

    /// Returns a reference to the element at the given coordinates, without bounds checking.
    ///
    /// # Safety
    ///
    /// Calling this method with out-of-bounds coordinates is *undefined-behaviour*.
    #[inline]
    pub unsafe fn get_unchecked(&self, coords: Coords) -> &T {
        debug_assert!(self.contains(coords));
        self.arr.get_unchecked(self.calc_index(coords))
    }

    /// Returns a mutable reference to the element at the given coordinates, without bounds
    /// checking.
    ///
    /// # Safety
    ///
    /// Calling this method with out-of-bounds coordinates is *undefined-behaviour*.
    #[inline]
    pub unsafe fn get_unchecked_mut(&mut self, coords: Coords) -> &mut T {
        debug_assert!(self.contains(coords));
        self.arr.get_unchecked_mut(self.calc_index(coords))
    }

    /// Returns all elements in block as a slice in memory order.
    #[inline]
    pub fn raw(&self) -> &[T] {
        self.arr
    }

    /// Returns all elements in block as a mutable slice in memory order.
    #[inline]
    pub fn raw_mut(&mut self) -> &mut [T] {
        self.arr
    }

    /// Returns the 1D memory index calculated from 2D coordinates.
    fn calc_index(&self, (row, col): Coords) -> usize {
        B::WIDTH * row + col
    }
}

impl<'a, T, B: BlockDim> Index<Coords> for BlockMut<'a, T, B> {
    type Output = T;

    #[inline]
    fn index(&self, coords: Coords) -> &Self::Output {
        self.get(coords).expect("Coordinates out of bounds")
    }
}

impl<'a, T, B: BlockDim> IndexMut<Coords> for BlockMut<'a, T, B> {
    #[inline]
    fn index_mut(&mut self, coords: Coords) -> &mut Self::Output {
        self.get_mut(coords).expect("Coordinates out of bounds")
    }
}

#[cfg(feature = "serde")]
mod serde_hack {
    use super::*;
    use core::convert::{From, TryFrom};
    use core::fmt;

    /// Error if invalid dimensions are passed in or deserialized.
    ///
    /// Currently, only used for `serde` deserialization, but in the future, this should be used
    /// for the [`BlockGrid<T, B>`] constructors as well.
    #[derive(Debug)]
    pub(super) struct InvalidSizeError;

    impl fmt::Display for InvalidSizeError {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            write!(f, "Dimensions are invalid")
        }
    }

    /// A "trick" to avoid writing (de)serialization code with validation.
    ///
    /// See PR for details.
    #[derive(Deserialize, Serialize)]
    pub(super) struct ShadowBlockGrid<T> {
        rows: usize,
        cols: usize,
        #[serde(rename = "b")]
        bwidth: usize,
        buf: Vec<T>,
    }

    // Serialization
    impl<T, B: BlockDim> From<BlockGrid<T, B>> for ShadowBlockGrid<T> {
        fn from(bgrid: BlockGrid<T, B>) -> Self {
            // Assumes `bgrid` is in valid state
            Self {
                rows: bgrid.rows(),
                cols: bgrid.cols(),
                bwidth: B::WIDTH,
                buf: bgrid.take_raw_vec(),
            }
        }
    }

    // Deserialization
    impl<T, B: BlockDim> TryFrom<ShadowBlockGrid<T>> for BlockGrid<T, B> {
        type Error = InvalidSizeError;

        fn try_from(shadow: ShadowBlockGrid<T>) -> Result<Self, Self::Error> {
            let ShadowBlockGrid {
                rows,
                cols,
                bwidth,
                buf,
            } = shadow;
            // Check that deserialized data is a valid state
            if bwidth != B::WIDTH {
                return Err(InvalidSizeError);
            }
            Self::from_raw_vec(rows, cols, buf).map_err(|_| InvalidSizeError)
        }
    }
}