1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
//! A crate implementing a Brukhard Keller tree datastructure which allows for fast querying of
//! "close" matches on discrete distances.
//!
//! ```rust
//! use bktree::*;
//!
//! let mut bk = BkTree::new(hamming_distance);
//! bk.insert_all(vec![0, 4, 5, 14, 15]);
//!
//! let (words, dists): (Vec<i32>, Vec<isize>) = bk.find(13, 1).into_iter().unzip();
//! assert_eq!(words, [5, 15]);
//! assert_eq!(dists, [1, 1]);
//! ```
//!
//! ```rust
//! use bktree::*;
//!
//! let mut bk = BkTree::new(levenshtein_distance);
//! bk.insert_all(vec![
//!     "book", "books", "boo", "boon", "cook", "cake", "cape", "cart",
//! ]);
//! let (words, dists): (Vec<&str>, Vec<isize>) = bk.find("bo", 2).into_iter().unzip();
//! assert_eq!(words, ["book", "boo", "boon"]);
//! assert_eq!(dists, [2, 1, 2]);
//! ```

/// Typical distance functions to use with the BK-tree
pub mod distance;

pub use distance::*;

#[derive(Debug, Eq, PartialEq)]
struct Node<T> {
    word: T,
    children: Vec<(isize, Node<T>)>,
}

/// A BK-tree datastructure
///
pub struct BkTree<T> {
    root: Option<Box<Node<T>>>,
    dist: Box<dyn Fn(&T, &T) -> isize>,
}

impl<T> BkTree<T> {
    /// Create a new BK-tree with a given distance function
    pub fn new(dist: impl Fn(&T, &T) -> isize + 'static) -> Self {
        Self {
            root: None,
            dist: Box::new(dist),
        }
    }

    /// Insert every element from a given iterator in the BK-tree
    pub fn insert_all<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        for i in iter {
            self.insert(i);
        }
    }

    /// Insert a new element in the BK-tree
    pub fn insert(&mut self, val: T) {
        match self.root {
            None => {
                self.root = Some(Box::new(Node {
                    word: val,
                    children: Vec::new(),
                }))
            }
            Some(ref mut root_node) => {
                let mut u = &mut **root_node;
                loop {
                    let k = (self.dist)(&u.word, &val);
                    if k == 0 {
                        return;
                    }

                    let v = u.children.iter().position(|(dist, _)| *dist == k);
                    match v {
                        None => {
                            u.children.push((
                                k,
                                Node {
                                    word: val,
                                    children: Vec::new(),
                                },
                            ));
                            return;
                        }
                        Some(pos) => {
                            let (_, ref mut vnode) = u.children[pos];
                            u = vnode;
                        }
                    }
                }
            }
        }
    }

    /// Find the closest elements to a given value present in the BK-tree
    ///
    /// Returns pairs of element references and distances
    pub fn find(&self, val: T, max_dist: isize) -> Vec<(&T, isize)> {
        match self.root {
            None => Vec::new(),
            Some(ref root) => {
                let mut found = Vec::new();

                let mut candidates: std::collections::VecDeque<&Node<T>> =
                    std::collections::VecDeque::new();
                candidates.push_back(root);

                while let Some(n) = candidates.pop_front() {
                    let distance = (self.dist)(&n.word, &val);
                    if distance <= max_dist {
                        found.push((&n.word, distance));
                    }

                    candidates.extend(
                        n.children
                            .iter()
                            .filter(|(arc, _)| (*arc - distance).abs() <= max_dist)
                            .map(|(_, node)| node),
                    );
                }
                found
            }
        }
    }

    /// Convert the BK-tree into an iterator over its elements, in no particular order
    pub fn into_iter(self) -> IntoIter<T> {
        let mut queue = Vec::new();
        if let Some(root) = self.root {
            queue.push(*root);
        }
        IntoIter { queue }
    }
    /// Create an iterator over references of BK-tree elements, in no particular order
    pub fn iter(&self) -> Iter<T> {
        let mut queue = Vec::new();
        if let Some(ref root) = self.root {
            queue.push(&**root);
        }
        Iter { queue }
    }
}

impl<T> IntoIterator for BkTree<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        self.into_iter()
    }
}

/// Iterator over BK-tree elements
pub struct IntoIter<T> {
    queue: Vec<Node<T>>,
}

impl<T> Iterator for IntoIter<T> {
    type Item = T;
    fn next(&mut self) -> Option<Self::Item> {
        self.queue.pop().map(|node| {
            self.queue.extend(node.children.into_iter().map(|(_, n)| n));
            node.word
        })
    }
}

/// Iterator over BK-tree elements, by reference
pub struct Iter<'a, T> {
    queue: Vec<&'a Node<T>>,
}

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;
    fn next(&mut self) -> Option<Self::Item> {
        self.queue.pop().map(|node| {
            self.queue.extend(node.children.iter().map(|(_, n)| n));
            &node.word
        })
    }
}

#[cfg(test)]
mod tests {
    use crate::distance::*;
    use crate::BkTree;
    #[test]
    fn levenshtein_distance_test() {
        let mut bk = BkTree::new(levenshtein_distance);
        bk.insert_all(vec![
            "book", "books", "boo", "boon", "cook", "cake", "cape", "cart",
        ]);
        let (words, dists): (Vec<&str>, Vec<isize>) = bk.find("bo", 2).into_iter().unzip();
        assert_eq!(words, ["book", "boo", "boon"]);
        assert_eq!(dists, [2, 1, 2]);
    }

    #[test]
    fn hamming_distance_test() {
        let mut bk = BkTree::new(hamming_distance);
        bk.insert_all(vec![0, 4, 5, 14, 15]);

        let (words, dists): (Vec<i32>, Vec<isize>) = bk.find(13, 1).into_iter().unzip();
        assert_eq!(words, [5, 15]);
        assert_eq!(dists, [1, 1]);
    }

    #[test]
    fn iterators_test() {
        let mut bk = BkTree::new(hamming_distance);
        bk.insert_all(vec![0, 4, 5, 14, 15]);

        let iter_res: Vec<&i32> = bk.iter().collect();
        assert_eq!(iter_res, [&0, &15, &14, &5, &4]);
        let intoiter_res: Vec<i32> = bk.into_iter().collect();
        assert_eq!(intoiter_res, [0, 15, 14, 5, 4]);
    }
}