1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
/*! `BitSlice` Wide Reference

This module bears some explanation. Let's get *uncomfortable* here.

Safe Rust is very strict about concepts like lifetimes and size in memory. It
won't allow you to have arbitrary *references* to things where Rust doesn't feel
absolutely confident that the referent will outlive the reference, and it won't
let you have things *at all* that it can't size at compile time. This makes
dealing with runtime-sized memory of uncertain lifetime tricky to do, and the
language provides some tools out of the box for this: slice references, which
store a pointer and also a length, and do so in a manner vaguely obscured to the
rest of Rust code behind opaque stdlib types.

My first instinct was to define `BitSlice` as a newtype wrapper around an `&T`,
so that `BitSlice` would be sized and manageable directly. Unfortunately, this
parameterizes the lifetime of the reference into the `BitSlice` struct, making
it generic over a lifetime. When I tried to implement `Deref` on `BitVec` to
return a `BitSlice`, I realized I could not do so for two main reasons: one,
`Deref` requires returning a reference to a type, and it is impossible to tell
Rust "this type is a named reference", and two, ... the lifetime parameter of
`BitSlice` is not able to be provided by the `Deref` trait, the `deref` trait
function, or even by using Higher Ranked Trait Bounds because HRTB just allows
the creation of a lifetime parameter in items in the trait scope that were not
defined with that lifetime parameter, but without Generic Associated Types it is
impossible to add that lifetime parameter to the associated type `Target`!

Also this ran into mutability issues in regards to the interior reference vs the
wrapper.

So `BitSlice` is a newtype wrapper around `[T]`, and can only be touched as a
reference or mutable reference, and has the advantage that now it can be a
`Deref::Target`.

**DO NOT** create an `&BitSlice` yourself! A slice reference can be made to
count bits using `.into()`.
!*/

use super::{
	Bits,
	Endian,
	BigEndian,
	BitVec,
	TRUE,
	FALSE,
};
use std::borrow::ToOwned;
use std::cmp::{
	Eq,
	Ord,
	Ordering,
	PartialEq,
	PartialOrd,
};
use std::convert::{
	AsRef,
	AsMut,
	From,
};
use std::fmt::{
	self,
	Debug,
	Display,
	Formatter,
};
use std::iter::{
	DoubleEndedIterator,
	ExactSizeIterator,
	Iterator,
	IntoIterator,
};
use std::marker::PhantomData;
use std::mem;
use std::ops::{
	BitAndAssign,
	BitOrAssign,
	BitXorAssign,
	Index,
	Not,
	ShlAssign,
	ShrAssign,
};
use std::ptr;
use std::slice;

/** A compact slice of bits, whose cursor and storage type can be customized.

`BitSlice` is a newtype wrapper over `[T]`, and as such can only be held by
reference. It is impossible to create a `Box<BitSlice<E, T>>` from this library,
and assembling one yourself is Undefined Behavior for which this library is not
responsible. **Do not try to create a `Box<BitSlice>`.** If you want an owned
bit collection, use `BitVec`.

`BitSlice` is strictly a reference type. The memory it governs must be owned by
some other type, and a shared or exclusive reference to it as `BitSlice` can be
created by using the `From` implementation on `&BitSlice` and `&mut BitSlice`.

`BitSlice` is to `BitVec` what `[T]` is to `Vec<T>`.

`BitSlice` takes two type parameters.

- `E: Endian` must be an implementor of the `Endian` trait. `BitVec` takes a
  `PhantomData` marker for access to the associated functions, and will never
  make use of an instance of the trait. The default implementations,
  `LittleEndian` and `BigEndian`, are zero-sized, and any further
  implementations should be as well, as the invoked functions will never receive
  state.
- `T: Bits` must be a primitive type. Rust decided long ago to not provide a
  unifying trait over the primitives, so `Bits` provides access to just enough
  properties of the primitives for `BitVec` to use. This trait is sealed against
  downstream implementation, and can only be implemented in this crate.
**/
#[cfg_attr(nightly, repr(transparent))]
pub struct BitSlice<E: Endian = BigEndian, T: Bits = u8> {
	_endian: PhantomData<E>,
	inner: [T],
}

impl<E, T> BitSlice<E, T>
where E: Endian, T: Bits {
	/// Gets the bit value at the given position.
	///
	/// The index value is a semantic count, not a bit address. It converts to a
	/// bit position internally to this function.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![0, 0, 1, 0, 0];
	/// let bits: &BitSlice = &bv;
	/// assert!(bits.get(2));
	/// ```
	pub fn get(&self, index: usize) -> bool {
		assert!(index < self.len(), "Index out of range!");
		let (elt, bit) = T::split(index);
		self.as_ref()[elt].get(E::curr::<T>(bit))
	}

	/// Sets the bit value at the given position.
	///
	/// The index value is a semantic count, not a bit address. It converts to a
	/// bit position internally to this function.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let mut bv = bitvec![0; 5];
	/// let bits: &mut BitSlice = &mut bv;
	/// bits.set(2, true);
	/// assert!(bits.get(2));
	/// ```
	pub fn set(&mut self, index: usize, value: bool) {
		assert!(index < self.len(), "Index out of range!");
		let (elt, bit) = T::split(index);
		self.as_mut()[elt].set(E::curr::<T>(bit), value);
	}

	/// Returns the number of bits contained in the `BitSlice`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![1; 10];
	/// let bits: &BitSlice = &bv;
	/// assert_eq!(bits.len(), 10);
	/// ```
	pub fn len(&self) -> usize {
		self.inner.len()
	}

	/// Counts how many *whole* storage elements are in the `BitSlice`.
	///
	/// If the `BitSlice` length is not an even multiple of the width of `T`,
	/// then the slice under this `BitSlice` is one element longer than this
	/// method reports, and the number of bits in it are reported by `bits()`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![1; 10];
	/// let bits: &BitSlice = &bv;
	/// assert_eq!(bits.elts(), 1);
	/// ```
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![1; 16];
	/// let bits: &BitSlice = &bv;
	/// assert_eq!(bits.elts(), 2);
	/// ```
	pub fn elts(&self) -> usize {
		self.len() >> T::BITS
	}

	/// Counts how many bits are in the trailing partial storage element.
	///
	/// If the `BitSlice` length is an even multiple of the width of `T`, then
	/// this returns 0 and the `BitSlice` does not consider its final element to
	/// be partially used.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![1; 10];
	/// let bits: &BitSlice = &bv;
	/// assert_eq!(bits.bits(), 2);
	/// ```
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![1; 16];
	/// let bits: &BitSlice = &bv;
	/// assert_eq!(bits.bits(), 0);
	/// ```
	pub fn bits(&self) -> u8 {
		self.len() as u8 & T::MASK
	}

	/// Returns `true` if the slice contains no bits.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![];
	/// let bits: &BitSlice = &bv;
	/// assert!(bits.is_empty());
	/// ```
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![0; 5];
	/// let bits: &BitSlice = &bv;
	/// assert!(!bits.is_empty());
	/// ```
	pub fn is_empty(&self) -> bool {
		self.len() == 0
	}

	/// Provide read-only iteration across the collection.
	///
	/// The iterator returned from this method implements `ExactSizeIterator`
	/// and `DoubleEndedIterator` just as the consuming `.into_iter()` method’s
	/// iterator does.
	pub fn iter<'a>(&'a self) -> Iter<'a, E, T> {
		self.into_iter()
	}

	/// Provide mutable traversal of the collection.
	///
	/// It is impossible to implement `IndexMut` on `BitSlice` because bits do
	/// not have addresses, so there can be no `&mut u1`. This method allows the
	/// client to receive an enumerated bit, and provide a new bit to set at
	/// each index.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let mut bv = bitvec![1; 8];
	/// let bref: &mut BitSlice = &mut bv;
	/// bref.for_each(|idx, bit| {
	///     if idx % 2 == 0 {
	///         !bit
	///     }
	///     else {
	///         bit
	///     }
	/// });
	/// assert_eq!(&[0b01010101], bref.as_ref());
	/// ```
	pub fn for_each<'a, F>(&'a mut self, op: F)
	where F: Fn(usize, bool) -> bool {
		for idx in 0 .. self.len() {
			let tmp = self.get(idx);
			self.set(idx, op(idx, tmp));
		}
	}

	/// Retrieve a read pointer to the start of the data slice.
	pub(crate) fn as_ptr(&self) -> *const T {
		self.inner.as_ptr()
	}

	/// Retrieve a write pointer to the start of the data slice.
	pub(crate) fn as_mut_ptr(&mut self) -> *mut T {
		self.inner.as_mut_ptr()
	}

	/// Compute the actual length of the data slice, including the partial tail
	/// if any.
	///
	/// # Examples
	///
	/// ```rust,ignore
	/// use bitvec::*;
	/// let bv = bitvec![1; 10];
	/// let bits: &BitSlice = &bv;
	/// assert_eq!(bits.elts(), 1);
	/// assert_eq!(bits.raw_len(), 2);
	/// ```
	pub(crate) fn raw_len(&self) -> usize {
		self.elts() + if self.bits() > 0 { 1 } else { 0 }
	}

	/// Print a type header into the Formatter.
	pub(crate) fn fmt_header(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "BitSlice<{}, {}>", E::TY, T::TY)
	}

	/// Format the contents data slice.
	///
	/// The debug flag indicates whether to indent each line (`Debug` does,
	/// `Display` does not).
	pub(crate) fn fmt_body(&self, fmt: &mut Formatter, debug: bool) -> fmt::Result {
		let (elts, bits) = T::split(self.len());
		let len = self.raw_len();
		let buf = self.as_ref();
		let alt = fmt.alternate();
		for idx in 0 .. elts {
			Self::fmt_element(fmt, &buf[idx])?;
			if idx < len - 1 {
				match (alt, debug) {
					// {}
					(false, false) => fmt.write_str(" "),
					// {:#}
					(true, false) => writeln!(fmt),
					// {:?}
					(false, true) => fmt.write_str(", "),
					// {:#?}
					(true, true) => { writeln!(fmt, ",")?; fmt.write_str("    ") },
				}?;
			}
		}
		if bits > 0 {
			Self::fmt_bits(fmt, &buf[elts], bits)?;
		}
		Ok(())
	}

	/// Format a whole storage element of the data slice.
	pub(crate) fn fmt_element(fmt: &mut Formatter, elt: &T) -> fmt::Result {
		Self::fmt_bits(fmt, elt, T::WIDTH)
	}

	/// Format a partial element of the data slice.
	pub(crate) fn fmt_bits(fmt: &mut Formatter, elt: &T, bits: u8) -> fmt::Result {
		use std::fmt::Write;
		let mut out = String::with_capacity(bits as usize);
		for bit in 0 .. bits {
			let cur = E::curr::<T>(bit);
			write!(out, "{}", if elt.get(cur) { "1" } else { "0" })?;
		}
		fmt.write_str(&out)
	}
}

/// Give write access to all elements in the underlying storage, including the
/// partially-filled tail element (if present).
impl<E, T> AsMut<[T]> for BitSlice<E, T>
where E: Endian, T: Bits {
	/// Access the underlying store.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let mut bv: BitVec = bitvec![0, 0, 0, 0, 0, 0, 0, 0, 1];
	/// for elt in bv.as_mut() {
	///   *elt += 2;
	/// }
	/// assert_eq!(&[2, 0b1000_0010], bv.as_ref());
	/// ```
	fn as_mut(&mut self) -> &mut [T] {
		let (ptr, len): (*mut T, usize) = (self.as_mut_ptr(), self.raw_len());
		unsafe { slice::from_raw_parts_mut(ptr, len) }
	}
}

/// Give read access to all elements in the underlying storage, including the
/// partially-filled tail element (if present).
impl<E, T> AsRef<[T]> for BitSlice<E, T>
where E: Endian, T: Bits {
	/// Access the underlying store.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![0, 0, 0, 0, 0, 0, 0, 0, 1];
	/// let bref: &BitSlice = &bv;
	/// assert_eq!(&[0, 0b1000_0000], bref.as_ref());
	/// ```
	fn as_ref(&self) -> &[T] {
		let (ptr, len): (*const T, usize) = (self.as_ptr(), self.raw_len());
		unsafe { slice::from_raw_parts(ptr, len) }
	}
}

/// Performs the Boolean AND operation against another bitstream and writes the
/// result into `self`. If the other bitstream ends before `self` does, it is
/// extended with zero, clearing all remaining bits in `self`.
impl<E, T, I> BitAndAssign<I> for BitSlice<E, T>
where E: Endian, T: Bits, I: IntoIterator<Item=bool> {
	/// AND a bitstream inta a slice.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let lhs: &mut BitSlice = &mut bitvec![0, 1, 0, 1, 0, 1];
	/// let rhs                =      bitvec![0, 0, 1, 1];
	/// *lhs &= rhs;
	/// assert_eq!("000100", &format!("{}", lhs));
	/// ```
	fn bitand_assign(&mut self, rhs: I) {
		use std::iter::repeat;
		for (idx, other) in (0 .. self.len()).zip(rhs.into_iter().chain(repeat(false))) {
			let val = self.get(idx) & other;
			self.set(idx, val);
		}
	}
}

/// Performs the Boolear OR operation against another bitstream and writes the
/// result into `self`. If the other bitstream ends before `self` does, it is
/// extended with zero, leaving all remaining bits in `self` as they were.
impl<E, T, I> BitOrAssign<I> for BitSlice<E, T>
where E: Endian, T: Bits, I: IntoIterator<Item=bool> {
	/// OR a bitstream into a slice.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let lhs: &mut BitSlice = &mut bitvec![0, 1, 0, 1, 0, 1];
	/// let rhs                =      bitvec![0, 0, 1, 1];
	/// *lhs |= rhs;
	/// assert_eq!("011101", &format!("{}", lhs));
	/// ```
	fn bitor_assign(&mut self, rhs: I) {
		for (idx, other) in (0 .. self.len()).zip(rhs.into_iter()) {
			let val = self.get(idx) | other;
			self.set(idx, val);
		}
	}
}

/// Perform the Boolean XOR operation against another bitstream and writes the
/// result into `self`. If the other bitstream ends before `self` does, it is
/// extended with zero, leaving all remaining bits in `self` as they were.
impl<E, T, I> BitXorAssign<I> for BitSlice<E, T>
where E: Endian, T: Bits, I: IntoIterator<Item=bool> {
	/// XOR a bitstream into a slice.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let lhs: &mut BitSlice = &mut bitvec![0, 1, 0, 1, 0, 1];
	/// let rhs                =      bitvec![0, 0, 1, 1];
	/// *lhs ^= rhs;
	/// assert_eq!("011001", &format!("{}", lhs));
	/// ```
	fn bitxor_assign(&mut self, rhs: I) {
		use std::iter::repeat;
		for (idx, other) in (0 .. self.len()).zip(rhs.into_iter().chain(repeat(false))) {
			let val = self.get(idx) ^ other;
			self.set(idx, val);
		}
	}
}

/// Print the `BitSlice` for debugging.
///
/// The output is of the form `BitSlice<E, T> [ELT, *]` where `<E, T>` is the
/// endianness and element type, with square brackets on each end of the bits
/// and all the elements of the array printed in binary. The printout is always
/// in semantic order, and may not reflect the underlying buffer. To see the
/// underlying buffer, use `.as_ref()`.
///
/// The alternate character `{:#?}` prints each element on its own line, rather
/// than having all elements on the same line.
impl<E, T> Debug for BitSlice<E, T>
where E: Endian, T: Bits {
	/// Render the `BitSlice` type header and contents for debug.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bits: &BitSlice<LittleEndian, u16> = &bitvec![
	///   LittleEndian, u16;
	///   0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1,
	///   0, 1
	/// ];
	/// assert_eq!(
    ///     "BitSlice<LittleEndian, u16> [0101000011110101, 01]",
	///     &format!("{:?}", bits)
	/// );
	/// ```
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		let alt = fmt.alternate();
		self.fmt_header(fmt)?;
		fmt.write_str(" [")?;
		if alt { writeln!(fmt)?; }
		self.fmt_body(fmt, true)?;
		if alt { writeln!(fmt)?; }
		fmt.write_str("]")
	}
}

/// Prints the `BitSlice` for displaying.
///
/// This prints each element in turn, formatted in binary in semantic order (so
/// the first bit seen is printed first and the last bit seen is printed last).
/// Each element of storage is separated by a space for ease of reading.
///
/// The alternate character `{:#}` prints each element on its own line.
///
/// To see the in-memory representation, use `.as_ref()` to get access to the
/// raw elements and print that slice instead.
impl<E, T> Display for BitSlice<E, T>
where E: Endian, T: Bits {
	/// Renders the `BitSlice` contents for display.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bits: &BitSlice = &bitvec![0, 1, 0, 0, 1, 0, 1, 1, 0, 1];
	/// assert_eq!("01001011 01", &format!("{}", bits));
	/// ```
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		self.fmt_body(fmt, false)
	}
}

/// Build a `BitSlice` from a slice of elements. The resulting `BitSlice` will
/// always completely fill the original slice, and will not have a partial tail.
impl<'a, E, T> From<&'a [T]> for &'a BitSlice<E, T>
where E: Endian, T: 'a + Bits {
	/// Wrap an `&[T: Bits]` in an `&BitSlice<E: Endian, T>`. The endianness
	/// must be specified by the call site. The element type cannot be changed.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let src = vec![1u8, 2, 3];
	/// let borrow: &[u8] = &src;
	/// let bits: &BitSlice<BigEndian, _> = borrow.into();
	/// assert_eq!(bits.len(), 24);
	/// assert_eq!(bits.elts(), 3);
	/// assert_eq!(bits.bits(), 0);
	/// assert!(bits.get(7));  // src[0] == 0b0000_0001
	/// assert!(bits.get(14)); // src[1] == 0b0000_0010
	/// assert!(bits.get(22)); // src[2] == 0b0000_0011
	/// assert!(bits.get(23));
	/// ```
	fn from(src: &'a [T]) -> Self {
		let (ptr, len): (*const T, usize) = (src.as_ptr(), src.len());
		assert!(len <= T::MAX_ELT, "Source slice length out of range!");
		unsafe {
			mem::transmute(
				slice::from_raw_parts(ptr, len << T::BITS)
			)
		}
	}
}

/// Build a mutable `BitSlice` from a slice of mutable elements. The resulting
/// `BitSlice` will always completely fill the original slice, and will not have
/// a partial tail.
impl<'a, E, T> From<&'a mut [T]> for &'a mut BitSlice<E, T>
where E: Endian, T: 'a + Bits {
	/// Wrap an `&mut [T: Bits]` in an `&mut BitSlice<E: Endian, T>`. The
	/// endianness must be specified by the call site. The element type cannot
	/// be changed.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let mut src = vec![1u8, 2, 3];
	/// let borrow: &mut [u8] = &mut src;
	/// let bits: &mut BitSlice<LittleEndian, _> = borrow.into();
	/// //  The first bit read is the LSb of the first element, which is set.
	/// assert!(bits.get(0));
	/// bits.set(0, false);
	/// assert!(!bits.get(0));
	/// ```
	fn from(src: &'a mut [T]) -> Self {
		let (ptr, len): (*mut T, usize) = (src.as_mut_ptr(), src.len());
		assert!(len <= T::MAX_ELT, "Source slice length out of range!");
		unsafe {
			mem::transmute(
				slice::from_raw_parts_mut(ptr, len << T::BITS)
			)
		}
	}
}

/// Index a single bit by semantic count. The index must be less than the length
/// of the `BitSlice`.
impl<'a, E, T> Index<usize> for &'a BitSlice<E, T>
where E: Endian, T: 'a + Bits {
	type Output = bool;

	/// Look up a single bit by semantic count.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![0, 0, 1, 0, 0];
	/// let bits: &BitSlice = &bv;
	/// assert!(bits[2]);
	/// assert!(!bits[3]);
	/// ```
	fn index(&self, index: usize) -> &Self::Output {
		match self.get(index) {
			true => &TRUE,
			false => &FALSE,
		}
	}
}

/// Index a single bit by element and bit index within the element. The element
/// index must be less than the length of the underlying store, and the bit
/// index must be less than the width of the underlying element.
///
/// This index is not recommended for public use.
impl<'a, E, T> Index<(usize, u8)> for &'a BitSlice<E, T>
where E: Endian, T: 'a + Bits {
	type Output = bool;

	/// Look up a single bit by storage element and bit indices. The bit index
	/// is still a semantic count, not an absolute index into the element.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let mut bv = bitvec![0; 10];
	/// bv.push(true);
	/// let bits: &BitSlice = &bv;
	/// assert!(bits[(1, 2)]); // 10
	/// assert!(!bits[(1, 1)]); // 9
	/// ```
	fn index(&self, (elt, bit): (usize, u8)) -> &Self::Output {
		match self.get(T::join(elt, bit)) {
			true => &TRUE,
			false => &FALSE,
		}
	}
}

/// Produce a read-only iterator over all the bits in the `BitSlice`.
///
/// This iterator follows the ordering in the `BitSlice` type, and implements
/// `ExactSizeIterator` as `BitSlice` has a known, fixed length, and
/// `DoubleEndedIterator` as it has known ends.
impl<'a, E, T> IntoIterator for &'a BitSlice<E, T>
where E: Endian, T: 'a + Bits {
	type Item = bool;
	type IntoIter = Iter<'a, E, T>;

	/// Iterate over the slice.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![1, 0, 1, 0, 1, 1, 0, 0];
	/// let bref: &BitSlice = &bv;
	/// let mut count = 0;
	/// for bit in bref {
	///     if bit { count += 1; }
	/// }
	/// assert_eq!(count, 4);
	/// ```
	fn into_iter(self) -> Self::IntoIter {
		self.into()
	}
}

/// Flip all bits in the slice, in place.
///
/// This invokes the `!` operator on each element of the borrowed storage, and
/// so it will also flip bits in the tail that are outside the `BitSlice` length
/// if any. Use `^= repeat(true)` to flip only the bits actually inside the
/// `BitSlice` purview. `^=` also has the advantage of being a borrowing
/// operator rather than a consuming/returning operator.
impl<'a, E, T> Not for &'a mut BitSlice<E, T>
where E: Endian, T: 'a + Bits {
	type Output = Self;

	/// Invert all bits in the slice.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let mut bv = bitvec![0; 10];
	/// let bits: &mut BitSlice = &mut bv;
	/// let new_bits = !bits;
	/// //  The `bits` binding is consumed by the `!` operator, and a new reference
	/// //  is returned.
	/// // assert_eq!(bits.as_ref(), &[!0, !0]);
	/// assert_eq!(new_bits.as_ref(), &[!0, !0]);
	/// ```
	fn not(self) -> Self::Output {
		for elt in self.as_mut() {
			*elt = !*elt;
		}
		self
	}
}

/// Test if two `BitSlice`s are semantically — not bitwise — equal.
///
/// It is valid to compare two slices of different endianness or element types.
///
/// The equality condition requires that they have the same number of total bits
/// and that each pair of bits in semantic order are identical.
impl<A, B, C, D> PartialEq<BitSlice<C, D>> for BitSlice<A, B>
where A: Endian, B: Bits, C: Endian, D: Bits {
	/// Perform a comparison by `==`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let l: BitVec<LittleEndian, u16> = bitvec![LittleEndian, u16; 0, 1, 0, 1];
	/// let r: BitVec<BigEndian, u32> = bitvec![BigEndian, u32; 0, 1, 0, 1];
	///
	/// let ls: &BitSlice<_, _> = &l;
	/// let rs: &BitSlice<_, _> = &r;
	/// assert!(ls == rs);
	/// ```
	fn eq(&self, rhs: &BitSlice<C, D>) -> bool {
		let (l, r) = (self.iter(), rhs.iter());
		if l.len() != r.len() {
			return false;
		}
		l.zip(r).all(|(l, r)| l == r)
	}
}

impl<E, T> Eq for BitSlice<E, T>
where E: Endian, T: Bits {}

/// Compare two `BitSlice`s by semantic — not bitwise — ordering.
///
/// The comparison sorts by testing each index for one slice to have a set bit
/// where the other has an unset bit. If the slices are different, the slice
/// with the set bit sorts greater than the slice with the unset bit.
///
/// If one of the slices is exhausted before they differ, the longer slice is
/// greater.
impl<A, B, C, D> PartialOrd<BitSlice<C, D>> for BitSlice<A, B>
where A: Endian, B: Bits, C: Endian, D: Bits {
	/// Perform a comparison by `<` or `>`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let a = bitvec![0, 1, 0, 0];
	/// let b = bitvec![0, 1, 0, 1];
	/// let c = bitvec![0, 1, 0, 1, 1];
	/// let aref: &BitSlice = &a;
	/// let bref: &BitSlice = &b;
	/// let cref: &BitSlice = &c;
	/// assert!(aref < bref);
	/// assert!(bref < cref);
	/// ```
	fn partial_cmp(&self, rhs: &BitSlice<C, D>) -> Option<Ordering> {
		for (l, r) in self.iter().zip(rhs.iter()) {
			match (l, r) {
				(true, false) => return Some(Ordering::Greater),
				(false, true) => return Some(Ordering::Less),
				_ => continue,
			}
		}
		self.len().partial_cmp(&rhs.len())
	}
}

impl<E, T> Ord for BitSlice<E, T>
where E: Endian, T: Bits {
	fn cmp(&self, rhs: &Self) -> Ordering {
		match self.partial_cmp(rhs) {
			Some(ord) => ord,
			None => unreachable!("`BitSlice` has a total ordering"),
		}
	}
}

__bitslice_shift!(u8, u16, u32, u64, i8, i16, i32, i64);

/// Shift all bits in the array to the left — DOWN AND TOWARDS THE FRONT.
///
/// On primitives, the left-shift operator `<<` moves bits away from the origin
/// and towards the ceiling. This is because we label the bits in a primitive
/// with the minimum on the right and the maximum on the left, which is
/// big-endian bit order. This increases the value of the primitive being
/// shifted.
///
/// **THAT IS NOT HOW `BitSlice` WORKS!**
///
/// `BitSlice` defines its layout with the minimum on the left and the maximum
/// on the right! Thus, left-shifting moves bits towards the **minimum**.
///
/// In BigEndian order, the effect in memory will be what you expect the `<<`
/// operator to do.
///
/// **In LittleEndian order, the effect will be equivalent to using `>>` on**
/// **the primitives in memory!**
///
/// # Notes
///
/// In order to preserve the effecs in memory that this operator traditionally
/// expects, the bits that are emptied by this operation are zeroed rather than
/// left to their old value.
///
/// The shift amount is modulated against the array length, so it is not an
/// error to pass a shift amount greater than the array length.
///
/// A shift amount of zero is a no-op, and returns immediately.
impl<E, T> ShlAssign<usize> for BitSlice<E, T>
where E: Endian, T: Bits {
	/// Shift a slice left, in place.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let mut bv = bitvec![1, 1, 1, 0, 0, 0, 0, 0, 1];
	/// let bits: &mut BitSlice = &mut bv;
	/// *bits <<= 3;
	/// assert_eq!("00000100 0", &format!("{}", bits));
	/// //               ^ former tail
	/// ```
	fn shl_assign(&mut self, shamt: usize) {
		let len = self.len();
		//  Bring the shift amount down into the slice's domain.
		let shamt = shamt % len;
		//  If the shift amount was an even multiple of the length, exit.
		if shamt == 0 {
			return;
		}
		//  If the shift amount is an even multiple of the element width, use
		//  ptr::copy instead of a bitwise crawl
		if shamt & T::MASK as usize == 0 {
			//  Compute the shift distance measured in elements.
			let offset = shamt >> T::BITS;
			//  Compute the number of elements that will remain.
			let rem = self.raw_len() - offset;
			//  Memory model: suppose we have this slice of sixteen elements,
			//  that is shifted five elements to the left. We have three
			//  pointers and two lengths to manage.
			//  - rem is 11
			//  - offset is 5
			//  - head is [0]
			//  - body is [5; 11]
			//  - tail is [11]
			//  [ 0 1 2 3 4 5 6 7 8 9 a b c d e f ]
			//    |         ^---------+---------^  <- before
			//    ^-------------------^ ^-------^  <- zero-filled
			//    after
			//  Pointer to the front of the slice
			let head: *mut T = self.as_mut_ptr();
			//  Pointer to the front of the section that will move and be
			//  retained
			let body: *const T = &self.as_ref()[offset];
			//  Pointer to the back of the slice that will be zero-filled.
			let tail: *mut T = &mut self.as_mut()[rem];
			unsafe {
				ptr::copy(body, head, rem);
				ptr::write_bytes(tail, 0, offset);
			}
			return;
		}
		//  If the shift amount is not an even multiple, do a bitwise crawl and
		//  move bits forward, then zero-fill the back.
		//  Same general logic as above, but bit-level instead of element-level.
		for (to, from) in (shamt .. len).enumerate() {
			let val = self.get(from);
			self.set(to, val);
		}
		for bit in (len - shamt) .. len {
			self.set(bit, false);
		}
	}
}

/// Shift all bits in the array to the right — UP AND TOWARDS THE BACK.
///
/// On primitives, the right-shift operator `>>` moves bits towards the origin
/// and away from the ceiling. This is because we label the bits in a primitive
/// with the minimum on the right and the maximum on the left, which is
/// big-endian bit order. This decreases the value of the primitive being
/// shifted.
///
/// **THAT IS NOT HOW `BitSlice` WORKS!**
///
/// `BitSlice` defines its layout with the minimum on the left and the maximum
/// on the right! Thus, right-shifting moves bits towards the **maximum**.
///
/// In Big-Endian order, the effect in memory will be what you expect the `>>`
/// operator to do.
///
/// **In LittleEndian order, the effect will be equivalent to using `<<` on**
/// **the primitives in memory!**
///
/// # Notes
///
/// In order to preserve the effects in memory that this operator traditionally
/// expects, the bits that are emptied by this operation are zeroed rather than
/// left to their old value.
///
/// The shift amount is modulated against the array length, so it is not an
/// error to pass a shift amount greater than the array length.
///
/// A shift amount of zero is a no-op, and returns immediately.
impl<E, T> ShrAssign<usize> for BitSlice<E, T>
where E: Endian, T: Bits {
	/// Shift a slice right, in place.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let mut bv = bitvec![1, 0, 0, 0, 0, 0, 1, 1, 1];
	/// let bits: &mut BitSlice = &mut bv;
	/// *bits >>= 3;
	/// assert_eq!("00010000 0", &format!("{}", bits));
	/// //             ^ former head
	/// ```
	fn shr_assign(&mut self, shamt: usize) {
		let len = self.len();
		//  Bring the shift amount down into the slice's domain.
		let shamt = shamt % len;
		//  If the shift amount was an even multiple of the length, exit.
		if shamt == 0 {
			return;
		}
		//  If the shift amount is an even multiple of the element width, use
		//  ptr::copy instead of a bitwise crawl.
		if shamt & T::MASK as usize == 0 {
			//  Compute the shift amount measured in elements.
			let offset = shamt >> T::BITS;
			//  Compute the number of elements that will remain.
			let rem = self.raw_len() - offset;
			//  Memory model: suppose we have this slice of sixteen elements,
			//  that is shifted five elements to the right. We have two pointers
			//  and two lengths to manage.
			//  - rem is 11
			//  - offset is 5
			//  - head is [0; 11]
			//  - body is [5]
			//  [ 0 1 2 3 4 5 6 7 8 9 a b c d e f ]
			//    ^---------+---------^         |  <- before
			//    ^-------^ ^-------------------^  <- after
			//    zero-filled
			let head: *mut T = self.as_mut_ptr();
			let body: *mut T = &mut self.as_mut()[offset];
			unsafe {
				ptr::copy(head, body, rem);
				ptr::write_bytes(head, 0, offset);
			}
			return;
		}
		for (from, to) in (shamt .. len).enumerate().rev() {
			let val = self.get(from);
			self.set(to, val);
		}
		for bit in 0 .. shamt {
			self.set(bit, false);
		}
	}
}

/// Clone a borrowed `BitSlice` into an owned `BitVec`.
impl<E, T> ToOwned for BitSlice<E, T>
where E: Endian, T: Bits {
	type Owned = BitVec<E, T>;

	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let src = bitvec![0; 5];
	/// let src_ref: &BitSlice = &src;
	/// let dst = src_ref.to_owned();
	/// assert_eq!(src, dst);
	/// ```
	fn to_owned(&self) -> Self::Owned {
		let mut out = Self::Owned::with_capacity(self.len());
		unsafe {
			let src = self.as_ptr();
			let dst = out.as_mut_ptr();
			let len = self.raw_len();
			ptr::copy_nonoverlapping(src, dst, len);
			out.set_len(self.len());
		}
		out
	}
}

/// Permit iteration over a `BitSlice`
#[doc(hidden)]
pub struct Iter<'a, E: 'a + Endian, T: 'a + Bits> {
	inner: &'a BitSlice<E, T>,
	head: usize,
	tail: usize,
}

impl<'a, E: 'a + Endian, T: 'a + Bits> Iter<'a, E, T> {
	fn reset(&mut self) {
		self.head = 0;
		self.tail = self.inner.len();
	}
}

impl<'a, E: 'a + Endian, T: 'a + Bits> DoubleEndedIterator for Iter<'a, E, T> {
	fn next_back(&mut self) -> Option<Self::Item> {
		if self.tail > self.head {
			self.tail -= 1;
			Some(self.inner.get(self.tail))
		}
		else {
			self.reset();
			None
		}
	}
}

impl<'a, E: 'a + Endian, T: 'a + Bits> ExactSizeIterator for Iter<'a, E, T> {
	fn len(&self) -> usize {
		self.tail - self.head
	}
}

impl<'a, E: 'a + Endian, T: 'a + Bits> From<&'a BitSlice<E, T>> for Iter<'a, E, T> {
	fn from(src: &'a BitSlice<E, T>) -> Self {
		let len = src.len();
		Self {
			inner: src,
			head: 0,
			tail: len,
		}
	}
}

impl<'a, E: 'a + Endian, T: 'a + Bits> Iterator for Iter<'a, E, T> {
	type Item = bool;

	fn next(&mut self) -> Option<Self::Item> {
		if self.head < self.tail {
			let ret = self.inner.get(self.head);
			self.head += 1;
			Some(ret)
		}
		else {
			self.reset();
			None
		}
	}

	fn size_hint(&self) -> (usize, Option<usize>) {
		let rem = ExactSizeIterator::len(self);
		(rem, Some(rem))
	}

	/// Counts how many bits are live in the iterator, consuming it.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![BigEndian, u8; 0, 1, 0, 1, 0];
	/// assert_eq!(bv.iter().count(), 5);
	/// ```
	fn count(self) -> usize {
		ExactSizeIterator::len(&self)
	}

	/// Advances the iterator by `n` bits, starting from zero.
	///
	/// It is not an error to advance past the end of the iterator! Doing so
	/// returns `None`, and resets the iterator to its beginning.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![BigEndian, u8; 0, 0, 0, 1];
	/// let mut bv_iter = bv.iter();
	/// assert_eq!(bv_iter.len(), 4);
	/// assert!(bv_iter.nth(3).unwrap());
	/// ```
	///
	/// This example intentionally overshoots the iterator bounds, which causes
	/// a reset to the initiol state. It then demonstrates that `nth` is
	/// stateful, and is not an absolute index, by seeking ahead by two (to the
	/// third zero bit) and then taking the bit immediately after it, which is
	/// set. This shows that the argument to `nth` is how many bits to discard
	/// before yielding the next.
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![BigEndian, u8; 0, 0, 0, 1];
	/// let mut bv_iter = bv.iter();
	/// assert!(bv_iter.nth(4).is_none());
	/// assert!(!bv_iter.nth(2).unwrap());
	/// assert!(bv_iter.nth(0).unwrap());
	/// ```
	fn nth(&mut self, n: usize) -> Option<bool> {
		self.head += n;
		self.next()
	}

	/// Consumes the iterator, returning only the last bit.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![BigEndian, u8; 0, 0, 0, 1];
	/// assert!(bv.into_iter().last().unwrap());
	/// ```
	///
	/// Empty iterators return `None`
	///
	/// ```rust
	/// use bitvec::*;
	/// let bv = bitvec![];
	/// assert!(bv.into_iter().last().is_none());
	/// ```
	fn last(mut self) -> Option<bool> {
		self.next_back()
	}
}