1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
/*! Parallel bitfield access.

This module provides parallel, multiple-bit, access to a `BitSlice`. This
functionality permits the use of `BitSlice` as a library-level implementation of
the bitfield language feature found in C and C++.

The `BitField` trait is not sealed against client implementation, as there is no
useful way to automatically use a `BitOrder` implementation to provide a
universal behavior. As such, the trait has some requirements that the compiler
cannot enforce for client implementations.

# Batch Behavior

The purpose of this trait is to provide access to arbitrary bit regions as if
they were an ordinary memory location. As such, it is important for
implementations of this trait to provide shift/mask register transfer behavior
where possible, for as wide a span as possible in each action. Implementations
of this trait should *not* use bit-by-bit iteration.

# Register Bit Order Preservation

As a default assumption – user orderings *may* violate this, but *should* not –
each element of slice memory used to store part of a value should not reorder
the value bits. Transfer between slice memory and a CPU register should solely
be an ordinary value load or store between memory and the register, and a
shift/mask operation to select the part of the value that is live.

# Endianness

The `_le` and `_be` methods of `BitField` refer to the order in which
`T: BitStore` elements of the slice are assigned significance when containing
fragments of a stored data value. Within any `T` element, the order of its
constituent bytes is *not* governed by the `BitField` trait method.

The provided `BitOrder` implementors `Lsb0` and `Msb0` use the local machine’s
byte ordering. Other cursors *may* implement ordering of bytes within `T`
elements differently, for instance by calling `.to_be_bytes` before store and
`from_be_bytes` after load.
!*/

use crate::{
	access::BitAccess,
	array::BitArray,
	devel as dvl,
	domain::{
		Domain,
		DomainMut,
	},
	index::BitMask,
	mem::BitMemory,
	order::{
		BitOrder,
		Lsb0,
		Msb0,
	},
	slice::BitSlice,
	store::BitStore,
	view::BitView,
};

use core::{
	mem,
	ops::{
		Shl,
		Shr,
	},
	ptr,
};

use tap::pipe::Pipe;

#[cfg(feature = "alloc")]
use crate::{
	boxed::BitBox,
	vec::BitVec,
};

/** Performs C-style bitfield access through a `BitSlice`.

Bit orderings that permit batched access to regions of memory are enabled to
load data from, and store data to, a `BitStore` with faster behavior than the
default bit-by-bit traversal.

This trait transfers data between a `BitSlice` and a local element. The trait
functions always place the live bit region of the slice against the least
significant bit edge of the local element (return value of `load`, argument of
`store`).

Implementations are encouraged to preserve in-memory bit ordering within a
memory element, so that call sites can provide a value pattern that the user can
clearly see matches what they expect for memory ordering. These methods should
only move data between locations, without modifying the data itself.

Methods should be called as `bits[start .. end].load_or_store()`, where the
range subslice selects no mor than the `M::BITS` element width being
transferred.
**/
pub trait BitField {
	/// Loads the bits in the `self` region into a local value.
	///
	/// This can load into any of the unsigned integers which implement
	/// `BitMemory`. Any further transformation must be done by the user.
	///
	/// The default implementation of this function calls [`load_le`] on
	/// little-endian byte-ordered CPUs, and [`load_be`] on big-endian
	/// byte-ordered CPUs.
	///
	/// # Parameters
	///
	/// - `&self`: A read reference to some bits in memory. This slice must be
	///   trimmed to have a width no more than the `M::BITS` width of the type
	///   being loaded. This can be accomplished with range indexing on a larger
	///   slice.
	///
	/// # Returns
	///
	/// A value `M` whose least `self.len()` significant bits are filled with
	/// the bits of `self`.
	///
	/// # Panics
	///
	/// This method is encouraged to panic if `self` is empty, or wider than a
	/// single element `M`.
	///
	/// [`load_be`]: #tymethod.load_be
	/// [`load_le`]: #tymethod.load_le
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	fn load<M>(&self) -> M
	where M: BitMemory {
		#[cfg(target_endian = "little")]
		return self.load_le::<M>();

		#[cfg(target_endian = "big")]
		return self.load_be::<M>();
	}

	/// Stores a sequence of bits from the user into the domain of `self`.
	///
	/// This can store any of the unsigned integers which implement
	/// `BitMemory`. Any other types must first be transformed by the user.
	///
	/// The default implementation of this function calls [`store_le`] on
	/// little-endian byte-ordered CPUs, and [`store_be`] on big-endian
	/// byte-ordered CPUs.
	///
	/// # Parameters
	///
	/// - `&mut self`: A write reference to some bits in memory. This slice must
	///   be trimmed to have a width no more than the `M::BITS` width of the
	///   type being stored. This can be accomplished with range indexing on a
	///   larger slice.
	/// - `value`: A value, whose `self.len()` least significant bits will be
	///   stored into `self`.
	///
	/// # Behavior
	///
	/// The `self.len()` least significant bits of `value` are written into the
	/// domain of `self`.
	///
	/// # Panics
	///
	/// This method is encouraged to panic if `self` is empty, or wider than a
	/// single element `M`.
	///
	/// [`store_be`]: #tymethod.store_be
	/// [`store_le`]: #tymethod.store_le
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	fn store<M>(&mut self, value: M)
	where M: BitMemory {
		#[cfg(target_endian = "little")]
		self.store_le(value);

		#[cfg(target_endian = "big")]
		self.store_be(value);
	}

	/// Loads from `self`, using little-endian element `T` ordering.
	///
	/// This function interprets a multi-element slice as having its least
	/// significant chunk in the low memory address, and its most significant
	/// chunk in the high memory address. Each element `T` is still interpreted
	/// from individual bytes according to the local CPU ordering.
	///
	/// # Parameters
	///
	/// - `&self`: A read reference to some bits in memory. This slice must be
	///   trimmed to have a width no more than the `M::BITS` width of the type
	///   being loaded. This can be accomplished with range indexing on a larger
	///   slice.
	///
	/// # Returns
	///
	/// A value `M` whose least `self.len()` significant bits are filled with
	/// the bits of `self`. If `self` spans multiple elements `T`, then the
	/// lowest-address `T` is interpreted as containing the least significant
	/// bits of the return value `M`, and the highest-address `T` is interpreted
	/// as containing its most significant bits.
	///
	/// # Panics
	///
	/// This method is encouraged to panic if `self` is empty, or wider than a
	/// single element `M`.
	fn load_le<M>(&self) -> M
	where M: BitMemory;

	/// Loads from `self`, using big-endian element `T` ordering.
	///
	/// This function interprets a multi-element slice as having its most
	/// significant chunk in the low memory address, and its least significant
	/// chunk in the high memory address. Each element `T` is still interpreted
	/// from individual bytes according to the local CPU ordering.
	///
	/// # Parameters
	///
	/// - `&self`: A read reference to some bits in memory. This slice must be
	///   trimmed to have a width no more than the `M::BITS` width of the type
	///   being loaded. This can be accomplished with range indexing on a larger
	///   slice.
	///
	/// # Returns
	///
	/// A value `M` whose least `self.len()` significant bits are filled with
	/// the bits of `self`. If `self` spans multiple elements `T`, then the
	/// lowest-address `T` is interpreted as containing the most significant
	/// bits of the return value `M`, and the highest-address `T` is interpreted
	/// as containing its least significant bits.
	///
	/// # Panics
	///
	/// This method is encouraged to panic if `self` is empty, or wider than a
	/// single element `M`.
	fn load_be<M>(&self) -> M
	where M: BitMemory;

	/// Stores into `self`, using little-endian element ordering.
	///
	/// This function interprets a multi-element slice as having its least
	/// significant chunk in the low memory address, and its most significant
	/// chunk in the high memory address. Each element `T` is still interpreted
	/// from individual bytes according to the local CPU ordering.
	///
	/// # Parameters
	///
	/// - `&mut self`: A write reference to some bits in memory. This slice must
	///   be trimmed to have a width no more than the `M::BITS` width of the
	///   type being stored. This can be accomplished with range indexing on a
	///   larger slice.
	/// - `value`: A value, whose `self.len()` least significant bits will be
	///   stored into `self`.
	///
	/// # Behavior
	///
	/// The `self.len()` least significant bits of `value` are written into the
	/// domain of `self`. If `self` spans multiple elements `T`, then the
	/// lowest-address `T` is interpreted as containing the least significant
	/// bits of the `M` return value, and the highest-address `T` is interpreted
	/// as containing its most significant bits.
	///
	/// # Panics
	///
	/// This method is encouraged to panic if `self` is empty, or wider than a
	/// single element `M`.
	fn store_le<M>(&mut self, value: M)
	where M: BitMemory;

	/// Stores into `self`, using big-endian element ordering.
	///
	/// This function interprets a multi-element slice as having its most
	/// significant chunk in the low memory address, and its least significant
	/// chunk in the high memory address. Each element `T` is still interpreted
	/// from individual bytes according to the local CPU ordering.
	///
	/// # Parameters
	///
	/// - `&mut self`: A write reference to some bits in memory. This slice must
	///   be trimmed to have a width no more than the `M::BITS` width of the
	///   type being stored. This can be accomplished with range indexing on a
	///   larger slice.
	/// - `value`: A value, whose `self.len()` least significant bits will be
	///   stored into `self`.
	///
	/// # Behavior
	///
	/// The `self.len()` least significant bits of `value` are written into the
	/// domain of `self`. If `self` spans multiple elements `T`, then the
	/// lowest-address `T` is interpreted as containing the most significant
	/// bits of the `M` return value, and the highest-address `T` is interpreted
	/// as containing its least significant bits.
	///
	/// # Panics
	///
	/// This method is encouraged to panic if `self` is empty, or wider than a
	/// single element `M`.
	fn store_be<M>(&mut self, value: M)
	where M: BitMemory;
}

impl<T> BitField for BitSlice<Lsb0, T>
where T: BitStore
{
	#[inline]
	fn load_le<M>(&self) -> M
	where M: BitMemory {
		let len = self.len();
		check("load", len, M::BITS);

		match self.domain() {
			//  In Lsb0, a `head` index counts distance from LSedge, and a
			//  `tail` index counts element width minus distance from MSedge.
			Domain::Enclave { head, elem, tail } => {
				get::<T, M>(elem, Lsb0::mask(head, tail), head.value())
			},
			Domain::Region { head, body, tail } => {
				let mut accum = M::ZERO;

				/* For multi-`T::Mem` domains, the most significant chunk is
				stored in the highest memory address, the tail. Each successive
				memory address lower has a chunk of decreasing significance,
				until the least significant chunk is stored in the lowest memory
				address, the head.
				*/

				if let Some((elem, tail)) = tail {
					accum = get::<T, M>(elem, Lsb0::mask(None, tail), 0);
				}

				for elem in body.iter().rev().copied() {
					/* Rust does not allow the use of shift instructions of
					exactly a type width to clear a value. This loop only enters
					when `M` is not narrower than `T::Mem`, and the shift is
					only needed when `M` occupies *more than one* `T::Mem` slot.
					When `M` is exactly as wide as `T::Mem`, this loop either
					does not runs (head and tail only), or runs once (single
					element), and thus the shift is unnecessary.

					As a const-expression, this branch folds at compile-time to
					conditionally remove or retain the instruction.
					*/
					if M::BITS > T::Mem::BITS {
						accum <<= T::Mem::BITS;
					}
					accum |= resize::<T::Mem, M>(elem);
				}

				if let Some((head, elem)) = head {
					let shamt = head.value();
					accum <<= T::Mem::BITS - shamt;
					accum |= get::<T, M>(elem, Lsb0::mask(head, None), shamt);
				}

				accum
			},
		}
	}

	#[inline]
	fn load_be<M>(&self) -> M
	where M: BitMemory {
		let len = self.len();
		check("load", len, M::BITS);

		match self.domain() {
			Domain::Enclave { head, elem, tail } => {
				get::<T, M>(elem, Lsb0::mask(head, tail), head.value())
			},
			Domain::Region { head, body, tail } => {
				let mut accum = M::ZERO;

				if let Some((head, elem)) = head {
					accum =
						get::<T, M>(elem, Lsb0::mask(head, None), head.value());
				}

				for elem in body.iter().copied() {
					if M::BITS > T::Mem::BITS {
						accum <<= T::Mem::BITS;
					}
					accum |= resize::<T::Mem, M>(elem);
				}

				if let Some((elem, tail)) = tail {
					accum <<= tail.value();
					accum |= get::<T, M>(elem, Lsb0::mask(None, tail), 0);
				}

				accum
			},
		}
	}

	#[inline]
	fn store_le<M>(&mut self, mut value: M)
	where M: BitMemory {
		let len = self.len();
		check("store", len, M::BITS);

		match self.domain_mut() {
			DomainMut::Enclave { head, elem, tail } => {
				set::<T, M>(elem, value, Lsb0::mask(head, tail), head.value())
			},
			DomainMut::Region { head, body, tail } => {
				if let Some((head, elem)) = head {
					let shamt = head.value();
					set::<T, M>(elem, value, Lsb0::mask(head, None), shamt);
					value >>= T::Mem::BITS - shamt;
				}

				for elem in body {
					*elem = resize(value);
					if M::BITS > T::Mem::BITS {
						value >>= T::Mem::BITS;
					}
				}

				if let Some((elem, tail)) = tail {
					set::<T, M>(elem, value, Lsb0::mask(None, tail), 0);
				}
			},
		}
	}

	#[inline]
	fn store_be<M>(&mut self, mut value: M)
	where M: BitMemory {
		let len = self.len();
		check("store", len, M::BITS);

		match self.domain_mut() {
			DomainMut::Enclave { head, elem, tail } => {
				set::<T, M>(elem, value, Lsb0::mask(head, tail), head.value())
			},
			DomainMut::Region { head, body, tail } => {
				if let Some((elem, tail)) = tail {
					set::<T, M>(elem, value, Lsb0::mask(None, tail), 0);
					value >>= tail.value()
				}

				for elem in body.iter_mut().rev() {
					*elem = resize(value);
					if M::BITS > T::Mem::BITS {
						value >>= T::Mem::BITS;
					}
				}

				if let Some((head, elem)) = head {
					set::<T, M>(
						elem,
						value,
						Lsb0::mask(head, None),
						head.value(),
					);
				}
			},
		}
	}
}

impl<T> BitField for BitSlice<Msb0, T>
where T: BitStore
{
	#[inline]
	fn load_le<M>(&self) -> M
	where M: BitMemory {
		let len = self.len();
		check("load", len, M::BITS);

		match self.domain() {
			Domain::Enclave { head, elem, tail } => get::<T, M>(
				elem,
				Msb0::mask(head, tail),
				T::Mem::BITS - tail.value(),
			),
			Domain::Region { head, body, tail } => {
				let mut accum = M::ZERO;

				if let Some((elem, tail)) = tail {
					accum = get::<T, M>(
						elem,
						Msb0::mask(None, tail),
						T::Mem::BITS - tail.value(),
					);
				}

				for elem in body.iter().rev().copied() {
					if M::BITS > T::Mem::BITS {
						accum <<= T::Mem::BITS;
					}
					accum |= resize::<T::Mem, M>(elem);
				}

				if let Some((head, elem)) = head {
					accum <<= T::Mem::BITS - head.value();
					accum |= get::<T, M>(elem, Msb0::mask(head, None), 0);
				}

				accum
			},
		}
	}

	#[inline]
	fn load_be<M>(&self) -> M
	where M: BitMemory {
		let len = self.len();
		check("load", len, M::BITS);

		match self.domain() {
			Domain::Enclave { head, elem, tail } => get::<T, M>(
				elem,
				Msb0::mask(head, tail),
				T::Mem::BITS - tail.value(),
			),
			Domain::Region { head, body, tail } => {
				let mut accum = M::ZERO;

				if let Some((head, elem)) = head {
					accum = get::<T, M>(elem, Msb0::mask(head, None), 0);
				}

				for elem in body.iter().copied() {
					if M::BITS > T::Mem::BITS {
						accum <<= T::Mem::BITS;
					}
					accum |= resize::<T::Mem, M>(elem);
				}

				if let Some((elem, tail)) = tail {
					let width = tail.value();
					accum <<= width;
					accum |= get::<T, M>(
						elem,
						Msb0::mask(None, tail),
						T::Mem::BITS - width,
					);
				}

				accum
			},
		}
	}

	#[inline]
	fn store_le<M>(&mut self, mut value: M)
	where M: BitMemory {
		let len = self.len();
		check("store", len, M::BITS);

		match self.domain_mut() {
			DomainMut::Enclave { head, elem, tail } => set::<T, M>(
				elem,
				value,
				Msb0::mask(head, tail),
				T::Mem::BITS - tail.value(),
			),
			DomainMut::Region { head, body, tail } => {
				if let Some((head, elem)) = head {
					set::<T, M>(elem, value, Msb0::mask(head, None), 0);
					value >>= T::Mem::BITS - head.value();
				}

				for elem in body.iter_mut() {
					*elem = resize(value);
					if M::BITS > T::Mem::BITS {
						value >>= T::Mem::BITS;
					}
				}

				if let Some((elem, tail)) = tail {
					set::<T, M>(
						elem,
						value,
						Msb0::mask(None, tail),
						T::Mem::BITS - tail.value(),
					);
				}
			},
		}
	}

	#[inline]
	fn store_be<M>(&mut self, mut value: M)
	where M: BitMemory {
		let len = self.len();
		check("store", len, M::BITS);

		match self.domain_mut() {
			DomainMut::Enclave { head, elem, tail } => set::<T, M>(
				elem,
				value,
				Msb0::mask(head, tail),
				T::Mem::BITS - tail.value(),
			),
			DomainMut::Region { head, body, tail } => {
				if let Some((elem, tail)) = tail {
					set::<T, M>(
						elem,
						value,
						Msb0::mask(None, tail),
						T::Mem::BITS - tail.value(),
					);
					value >>= tail.value();
				}

				for elem in body.iter_mut().rev() {
					*elem = resize(value);
					if M::BITS > T::Mem::BITS {
						value >>= T::Mem::BITS;
					}
				}

				if let Some((head, elem)) = head {
					set::<T, M>(elem, value, Msb0::mask(head, None), 0);
				}
			},
		}
	}
}

#[cfg(not(tarpaulin_include))]
impl<O, V> BitField for BitArray<O, V>
where
	O: BitOrder,
	V: BitView,
	BitSlice<O, V::Store>: BitField,
{
	#[inline]
	fn load_le<M>(&self) -> M
	where M: BitMemory {
		self.as_bitslice().load_le()
	}

	#[inline]
	fn load_be<M>(&self) -> M
	where M: BitMemory {
		self.as_bitslice().load_be()
	}

	#[inline]
	fn store_le<M>(&mut self, value: M)
	where M: BitMemory {
		self.as_mut_bitslice().store_le(value)
	}

	#[inline]
	fn store_be<M>(&mut self, value: M)
	where M: BitMemory {
		self.as_mut_bitslice().store_be(value)
	}
}

#[cfg(feature = "alloc")]
#[cfg(not(tarpaulin_include))]
impl<O, T> BitField for BitBox<O, T>
where
	O: BitOrder,
	T: BitStore,
	BitSlice<O, T>: BitField,
{
	#[inline]
	fn load_le<M>(&self) -> M
	where M: BitMemory {
		self.as_bitslice().load_le()
	}

	#[inline]
	fn load_be<M>(&self) -> M
	where M: BitMemory {
		self.as_bitslice().load_be()
	}

	#[inline]
	fn store_le<M>(&mut self, value: M)
	where M: BitMemory {
		self.as_mut_bitslice().store_le(value)
	}

	#[inline]
	fn store_be<M>(&mut self, value: M)
	where M: BitMemory {
		self.as_mut_bitslice().store_be(value)
	}
}

#[cfg(feature = "alloc")]
#[cfg(not(tarpaulin_include))]
impl<O, T> BitField for BitVec<O, T>
where
	O: BitOrder,
	T: BitStore,
	BitSlice<O, T>: BitField,
{
	#[inline]
	fn load_le<M>(&self) -> M
	where M: BitMemory {
		self.as_bitslice().load_le()
	}

	#[inline]
	fn load_be<M>(&self) -> M
	where M: BitMemory {
		self.as_bitslice().load_be()
	}

	#[inline]
	fn store_le<M>(&mut self, value: M)
	where M: BitMemory {
		self.as_mut_bitslice().store_le(value)
	}

	#[inline]
	fn store_be<M>(&mut self, value: M)
	where M: BitMemory {
		self.as_mut_bitslice().store_be(value)
	}
}

/// Asserts that a slice length is within a memory element width.
#[inline]
fn check(action: &'static str, len: usize, width: u8) {
	if !(1 ..= width as usize).contains(&len) {
		panic!("Cannot {} {} bits from a {}-bit region", action, width, len);
	}
}

/** Reads a value out of a section of a memory element.

This function is used to extract a portion of an `M` value from a portion of a
`T` value. The `BitField` implementations call it as they assemble a complete
`M`. It performs the following steps:

1. the referent value of the `elem` pointer is copied into local memory,
2. `mask`ed to discard the portions of `*elem` that are not live,
3. shifted to the LSedge of the `T::Mem` temporary,
4. then `resize`d into an `M` value.

This is the exact inverse of `set`.

# Type Parameters

- `T`: The `BitStore` type of a `BitSlice` that is the source of a read event.
- `M`: The local type of the data contained in that `BitSlice`.

# Parameters

- `elem`: An aliased reference to a single element of a `BitSlice` storage. This
  is required to remain aliased, as other write-capable references to the
  location may exist.
- `mask`: A `BitMask` of the live region of the value at `*elem` to be used as
  the contents of the returned value.
- `shamt`: The distance of the least significant bit of the mask region from the
  least significant edge of the `T::Mem` fetched value.

# Returns

`resize((*elem & mask) >> shamt)`
**/
#[inline]
fn get<T, M>(elem: &T, mask: BitMask<T::Mem>, shamt: u8) -> M
where
	T: BitStore,
	M: BitMemory,
{
	elem.load_value()
		.pipe(|val| mask & val)
		.value()
		.pipe(|val| Shr::<u8>::shr(val, shamt))
		.pipe(resize::<T::Mem, M>)
}

/** Writes a value into a section of a memory element.

This function is used to emplace a portion of an `M` value into a portion of a
`T` value. The `BitField` implementations call it as they disassemble a complete
`M`. It performs the following steps:

1. the provided `value` is `resize`d from `M` to `T::Mem`,
2. then shifted from the LSedge of the `T::Mem` temporary by `shamt`,
3. `mask`ed to discard the portions of `value` that are not live,
4. then written into the `mask`ed portion of `*elem`.

This is the exact inverse of `get`.

# Type Parameters

- `T`: The `BitStore` type of a `BitSlice` that is the sink of a write event.
- `M`: The local type of the data being written into that `BitSlice`.

# Parameters

- `elem`: An aliased reference to a single element of a `BitSlice` storage.
- `value`: The value whose least-significant bits will be written into the
  subsection of `*elt` covered by `mask`.
- `mask`: A `BitMask` of the live region of the value at `*elem` to be used as
  a filter on the provided value.
- `shamt`: The distance of the least significant bit of the mask region from the
  least significant edge of the `T::Mem` destination value.

# Effects

`*elem &= !mask; *elem |= (resize(value) << shamt) & mask;`
**/
#[inline]
fn set<T, M>(elem: &T::Alias, value: M, mask: BitMask<T::Mem>, shamt: u8)
where
	T: BitStore,
	M: BitMemory,
{
	//  Convert the aliasing reference into its accessing type.
	let elem = dvl::accessor(elem);
	//  Mark the mask as aliased, to fit into the accessor reference.
	let mask = dvl::alias_mask::<T>(mask);
	//  Modify `value` to fit the accessor reference, by:
	let value = value
		//  resizing from `M` to `T::Mem`,
		.pipe(resize::<M, T::Mem>)
		//  marking it as `T::Alias::Mem`,
		.pipe(dvl::alias_mem::<T>)
		//  and shifting it left by `shamt` to be in the mask region,
		.pipe(|val| Shl::<u8>::shl(val, shamt))
		//  then masking it.
		.pipe(|val| mask & val);

	elem.clear_bits(mask);
	elem.set_bits(value);
}

/** Resizes a value from one register width to another

This zero-extends or truncates its source value in order to fit in the target
type.

# Type Parameters

- `T`: The initial register type of the value to resize.
- `U`: The final register type of the resized value.

# Parameters

- `value`: Any register value

# Returns

`value`, either zero-extended if `U` is wider than `T` or truncated if `U` is
narrower than `T`.
**/
#[inline]
fn resize<T, U>(value: T) -> U
where
	T: BitMemory,
	U: BitMemory,
{
	let mut out = U::ZERO;
	let size_t = mem::size_of::<T>();
	let size_u = mem::size_of::<U>();

	unsafe {
		resize_inner::<T, U>(&value, &mut out, size_t, size_u);
	}

	out
}

/// Performs little-endian byte-order register resizing.
#[inline(always)]
#[cfg(target_endian = "little")]
#[cfg(not(tarpaulin_include))]
unsafe fn resize_inner<T, U>(
	src: &T,
	dst: &mut U,
	size_t: usize,
	size_u: usize,
)
{
	//  In LE, the least significant byte is the base address, so resizing is
	//  just a memcpy into a zeroed slot, taking only the smaller width.
	ptr::copy_nonoverlapping(
		src as *const T as *const u8,
		dst as *mut U as *mut u8,
		core::cmp::min(size_t, size_u),
	);
}

/// Performs big-endian byte-order register resizing.
#[inline(always)]
#[cfg(target_endian = "big")]
#[cfg(not(tarpaulin_include))]
unsafe fn resize_inner<T, U>(
	src: &T,
	dst: &mut U,
	size_t: usize,
	size_u: usize,
)
{
	let src = src as *const T as *const u8;
	let dst = dst as *mut U as *mut u8;

	//  In BE, shrinking a value requires moving the source base pointer up,
	if size_t > size_u {
		ptr::copy_nonoverlapping(src.add(size_t - size_u), dst, size_u);
	}
	//  While expanding a value requires moving the destination base pointer up.
	else {
		ptr::copy_nonoverlapping(src, dst.add(size_u - size_t), size_t);
	}
}

#[cfg(not(any(target_endian = "big", target_endian = "little")))]
compile_fail!(concat!(
	"This architecture is currently not supported. File an issue at ",
	env!(CARGO_PKG_REPOSITORY)
));

#[cfg(feature = "std")]
mod io;

#[cfg(test)]
mod tests;

// These tests are purely mathematical, and do not need to run more than once.
#[cfg(all(test, feature = "std", not(miri), not(tarpaulin)))]
mod permutation_tests;