1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
/*! Element bit indexing.

This module provides strong indexing types to manage the concept of addressing
bits inside spans of memory elements. The crate needs to have a concept of bit
positions that exist in memory (`BitIdx`), abstract “dead” bits that mark the
first bit past the end of a memory region and are not required to exist in
hardware (`BitTail`), specific bit positions that may be accessed by machine
instructions (`BitPos`), and element values that mask one or more bits of
interest (`BitMask`).
!*/

use crate::store::BitStore;

use core::{
	marker::PhantomData,
	ops::Deref,
};

#[cfg(feature = "serde")]
use core::convert::TryFrom;

/** Indicates a semantic index of a bit within a memory element.

This type is consumed by [`Cursor`] implementors, which use it to produce a
concrete bit position inside an element.

`BitIdx` is a semantic counter which has a defined, constant, and predictable
ordering. Values of `BitIdx` refer strictly to an abstract ordering, and not to
any actual bit positions within a memory element, so `BitIdx::<T>(0)` is always
the first bit counted within an element, but is not required to be the most or
least significant bits, or any other particular bits. Which specific bit is
referred by a `BitIdx` value is governed by implementors of `Cursor`.

# Type Parameters

- `T`: The memory element type controlled by this index.

[`Cursor`]: ../cursor/trait.Cursor.html
**/
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitIdx<T>
where T: BitStore {
	/// Semantic index within an element. Constrained to `0 .. T::BITS`.
	idx: u8,
	/// Marker for the indexed type.
	_ty: PhantomData<T>,
}

impl<T> BitIdx<T>
where T: BitStore {
	/// Wraps a counter value as a known-good index of the `T` element type.
	///
	/// # Parameters
	///
	/// - `idx`: A semantic index within a `T` memory element. It must be in the
	///   range `0 .. T::BITS`.
	#[inline(always)]
	pub(crate) unsafe fn new_unchecked(idx: u8) -> Self {
		debug_assert!(
			idx < T::BITS,
			"Bit index {} cannot exceed type width {}",
			idx,
			T::BITS,
		);
		Self { idx, _ty: PhantomData }
	}

	/// Increments a cursor to the next value, wrapping if needed.
	///
	/// # Parameters
	///
	/// - `self`: The original cursor.
	///
	/// # Returns
	///
	/// - `.0`: An incremented cursor, modulated to the domain `0 .. T::BITS`.
	/// - `.1`: Marks whether the increment crossed an element boundary.
	#[cfg(any(test, feature = "alloc"))]
	#[inline(always)]
	pub(crate) fn incr(self) -> (Self, bool) {
		let next = (*self).wrapping_add(1) & T::MASK;
		(next.idx(), next == 0)
	}

	/// Decrements a cursor to the prior value, wrapping if needed.
	///
	/// # Parameters
	///
	/// - `self`: The original cursor.
	///
	/// # Returns
	///
	/// - `.0`: A decremented cursor, modulated to the domain `0 .. T::BITS`.
	/// - `.1`: Marks whether the decrement crossed an element boundary.
	#[cfg(any(test, feature = "alloc"))]
	#[inline(always)]
	pub(crate) fn decr(self) -> (Self, bool) {
		let (prev, wrap) = (*self).overflowing_sub(1);
		((prev & T::MASK).idx(), wrap)
	}

	/// Finds the destination bit a certain distance away from a starting bit.
	///
	/// This produces the number of elements to move from the starting point,
	/// and then the bit index of the destination bit in the destination
	/// element.
	///
	/// # Parameters
	///
	/// - `self`: A bit index in some memory element, used as the starting
	///   position for the offset calculation.
	/// - `by`: The number of bits by which to move. Negative values move
	///   downwards in memory: towards index zero, then counting from index
	///   `T::MASK` to index zero in the next element lower in memory, repeating
	///   until arrival. Positive values move upwards in memory: towards index
	///   `T::MASK`, then counting from index zero to index `T::MASK` in the
	///   next element higher in memory, repeating until arrival.
	///
	/// # Returns
	///
	/// - `.0`: The number of elements by which to offset the caller’s element
	///   cursor. This value can be passed directly into [`ptr::offset`].
	/// - `.1`: The bit index of the destination bit in the element selected by
	///   applying the `.0` pointer offset.
	///
	/// # Safety
	///
	/// `by` must not be far enough to cause the returned element offset value
	/// to, when applied to the original memory address via [`ptr::offset`],
	/// produce a reference out of bounds of the original allocation. This
	/// method has no way of checking this requirement.
	///
	/// [`ptr::offset`]: https://doc.rust-lang.org/stable/std/primitive.pointer.html#method.offset
	pub(crate) fn offset(self, by: isize) -> (isize, Self) {
		let val = *self;

		//  Signed-add `*self` and the jump distance. Overflowing is the
		//  unlikely branch. The result is a bit index, and an overflow marker.
		//  `far` is permitted to be negative; this means that it is lower in
		//  memory than the origin bit. The number line has its origin at the
		//  front edge of the origin element, so `-1` is the *last* bit of the
		//  prior memory element.
		let (far, ovf) = by.overflowing_add(val as isize);
		//  If the `isize` addition does not overflow, then the sum can be used
		//  directly.
		if !ovf {
			//  If `far` is in the origin element, then the jump moves zero
			//  elements and produces `far` as an absolute index directly.
			if (0 .. T::BITS as isize).contains(&far) {
				(0, (far as u8).idx())
			}
			//  Otherwise, downshift the bit distance to compute the number of
			//  elements moved in either direction, and mask to compute the
			//  absolute bit index in the destination element.
			else {
				(far >> T::INDX, (far as u8 & T::MASK).idx())
			}
		}
		else {
			//  Overflowing `isize` addition happens to produce ordinary `usize`
			//  addition. In point of fact, `isize` addition and `usize`
			//  addition are the same machine instruction to perform the sum; it
			//  is merely the signed interpretation of the sum that differs. The
			//  sum can be recast back to `usize` without issue.
			let far = far as usize;
			//  This is really only needed in order to prevent sign-extension of
			//  the downshift; once shifted, the value can be safely re-signed.
			((far >> T::INDX) as isize, (far as u8 & T::MASK).idx())
		}
	}

	/// Computes the size of a span from `self` for `len` bits.
	///
	/// Spans always extend upwards in memory.
	///
	/// # Parameters
	///
	/// - `self`: The starting bit position of the span.
	/// - `len`: The number of bits to include in the span.
	///
	/// # Returns
	///
	/// - `.0`: The number of elements of `T` included in the span. If `len` is
	///   `0`, this will be `0`; otherwise, it will be at least one.
	/// - `.1`: The index of the first dead bit *after* the span. If `self` and
	///   `len` are both `0`, this will be `0`; otherwise, it will be in the
	///   domain `1 ..= T::BITS`.
	///
	/// # Notes
	///
	/// This defers to [`BitTail::span`], because `BitTail` is a strict superset
	/// of `BitIdx` (it is `{ BitIdx | T::BITS }`), and spans frequently begin
	/// from the tail of a slice in this crate. The `offset` function is *not*
	/// implemented on `BitTail`, and remains on `BitIdx` because offsets can
	/// only be computed from bit addresses that exist. It does not make sense
	/// to compute the offset from a `T::BITS` tail.
	///
	/// [`BitTail::span`]: struct.BitTail.html#method.span
	#[inline]
	pub(crate) fn span(self, len: usize) -> (usize, BitTail<T>) {
		unsafe { BitTail::new_unchecked(*self) }.span(len)
	}
}

impl<T> Deref for BitIdx<T>
where T: BitStore {
	type Target = u8;

	fn deref(&self) -> &Self::Target {
		&self.idx
	}
}

#[cfg(feature = "serde")]
impl<T> TryFrom<u8> for BitIdx<T>
where T: BitStore {
	type Error = &'static str;

	fn try_from(idx: u8) -> Result<Self, Self::Error> {
		if idx < T::BITS {
			Ok(Self { idx, _ty: PhantomData })
		}
		else {
			Err("Attempted to construct a `BitIdx` with an index out of range")
		}
	}
}

/** Indicates a semantic index of a dead bit *beyond* a memory element.

This type is equivalent to `BitIdx<T>`, except that it includes `T::BITS` in its
domain. Instances of this type will only ever contain `0` when the span they
describe is *empty*. Non-empty spans always cycle through the domain
`1 ..= T::BITS`.

This type cannot be used for indexing, and does not translate to `BitPos<T>`.
This type has no behavior other than viewing its internal `u8` for arithmetic.

# Type Parameters

- `T`: The memory element type controlled by this tail.
**/
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub(crate) struct BitTail<T>
where T: BitStore {
	/// Semantic index *after* an element. Constrained to `0 ..= T::BITS`.
	end: u8,
	/// Marker for the tailed type.
	_ty: PhantomData<T>,
}

impl<T> BitTail<T>
where T: BitStore {
	/// Mark that `end` is a tail index for a type.
	///
	/// # Parameters
	///
	/// - `end` must be in the range `0 ..= T::BITS`.
	pub(crate) unsafe fn new_unchecked(end: u8) -> Self {
		debug_assert!(
			end <= T::BITS,
			"Bit tail {} cannot surpass type width {}",
			end,
			T::BITS,
		);
		Self { end, _ty: PhantomData }
	}

	pub(crate) fn span(self, len: usize) -> (usize, Self) {
		let val = *self;
		debug_assert!(
			val <= T::BITS,
			"Tail out of range: {} overflows type width {}",
			val,
			T::BITS,
		);

		if len == 0 {
			return (0, self);
		}

		let head = val & T::MASK;

		let bits_in_head = (T::BITS - head) as usize;

		if len <= bits_in_head {
			return (1, (head + len as u8).tail());
		}

		let bits_after_head = len - bits_in_head;

		let elts = bits_after_head >> T::INDX;
		let tail = bits_after_head as u8 & T::MASK;

		let is_zero = (tail == 0) as u8;
		let edges = 2 - is_zero as usize;
		(elts + edges, ((is_zero << T::INDX) | tail).tail())

		/* The above expression is the branchless equivalent of this structure:

		if tail == 0 {
			(elts + 1, T::BITS.tail())
		}
		else {
			(elts + 2, tail.tail())
		}
		*/
	}
}

impl<T> Deref for BitTail<T>
where T: BitStore {
	type Target = u8;

	fn deref(&self) -> &Self::Target {
		&self.end
	}
}

/** Indicates a real electrical index within an element.

This type is produced by [`Cursor`] implementors, and marks a specific
electrical bit within a memory element, rather than `BitIdx`’s semantic bit.

# Type Parameters

- `T`: A `BitStore` element which provides bounds-checking information. The
  [`new`] constructor uses [`T::BITS`] to ensure that constructed `BitPos`
  instances are always valid to use within `T` elements.

[`Cursor`]: ../cursor/trait.Cursor.html
[`T::BITS`]: ../store/trait.BitStore.html#associatedconstant.BITS
[`new`]: #method.new
**/
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitPos<T>
where T: BitStore {
	/// Electrical position within an element. Constrained to `0 .. T::BITS`.
	pos: u8,
	/// Marker for the positioned type.
	_ty: PhantomData<T>,
}

impl<T> BitPos<T>
where T: BitStore {
	/// Produce a new bit position marker at a valid position value.
	///
	/// `Cursor` implementations should prefer this method, but *may* use
	/// [`::new_unchecked`] if they can guarantee that the range invariant is
	/// upheld.
	///
	/// # Parameters
	///
	/// - `pos`: The bit position value to encode. It must be in the range
	///   `0 .. T::BITS`.
	///
	/// # Panics
	///
	/// This function panics if `pos` is greater than or equal to `T::BITS`.
	///
	/// [`::new_unchecked`]: #method.new_unchecked
	#[inline]
	pub fn new(pos: u8) -> Self {
		assert!(
			pos < T::BITS,
			"Bit position {} cannot exceed type width {}",
			pos,
			T::BITS,
		);
		Self { pos, _ty: PhantomData }
	}

	/// Produce a new bit position marker at any position value.
	///
	/// # Safety
	///
	/// The caller *must* ensure that `pos` is less than `T::BITS`. `Cursor`
	/// implementations should prefer [`::new`], which panics on range failure.
	///
	/// # Parameters
	///
	/// - `pos`: The bit position value to encode. This must be in the range
	///   `0 .. T::BITS`.
	///
	/// # Returns
	///
	/// `pos` wrapped in the `BitPos` marker type.
	///
	/// # Panics
	///
	/// This function panics if `pos` is greater than or equal to `T::BITS`, but
	/// only in debug builds. It does not inspect `pos` in release builds.
	///
	/// [`::new`]: #method.new
	#[cfg_attr(debug_assertions, inline)]
	#[cfg_attr(not(debug_assertions), inline(always))]
	pub unsafe fn new_unchecked(pos: u8) -> Self {
		debug_assert!(
			pos < T::BITS,
			"Bit position {} cannot exceed type width {}",
			pos,
			T::BITS,
		);
		Self { pos, _ty: PhantomData }
	}
}

impl<T> Deref for BitPos<T>
where T: BitStore {
	type Target = u8;

	fn deref(&self) -> &Self::Target {
		&self.pos
	}
}

/** Wrapper type indicating a one-hot encoding of a bit mask for an element.

This type is produced by [`Cursor`] implementations to speed up access to the
underlying memory. It ensures that masks have exactly one set bit, and can
safely be used as a mask for read/write access to memory.

# Type Parameters

- `T`: The storage type being masked.

[`Cursor`]: ../cursor/trait.Cursor.html
**/
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitMask<T>
where T: BitStore {
	/// Mask value.
	mask: T,
}

impl<T> BitMask<T>
where T: BitStore {
	/// Produce a new bit-mask wrapper around a one-hot mask value.
	///
	/// `Cursor` implementations should prefer this method, but *may* use
	/// [`::new_unchecked`] if they can guarantee that the one-hot invariant is
	/// upheld.
	///
	/// # Parameters
	///
	/// - `mask`: The mask value to encode. This **must** have exactly one bit
	///   set high, and all others set low.
	///
	/// # Returns
	///
	/// `mask` wrapped in the `BitMask` marker type.
	///
	/// # Panics
	///
	/// This function unconditionally panics if `mask` has zero or multiple bits
	/// set high.
	///
	/// [`::new_unchecked`]: #method.new_unchecked
	#[inline]
	pub fn new(mask: T) -> Self {
		assert!(
			mask.count_ones() == 1,
			"Masks are required to have exactly one set bit: {:0>1$b}",
			mask,
			T::BITS as usize,
		);
		Self { mask }
	}

	/// Produce a new bit-mask wrapper around any value.
	///
	/// # Safety
	///
	/// The caller *must* ensure that `mask` has exactly one bit set. `Cursor`
	/// implementations should prefer [`::new`], which always panics on failure.
	///
	/// # Parameters
	///
	/// - `mask`: The mask value to encode. This must have exactly one bit set.
	///   Failure to uphold this requirement will introduce uncontrolled state
	///   contamination.
	///
	/// # Returns
	///
	/// `mask` wrapped in the `BitMask` marker type.
	///
	/// # Panics
	///
	/// This function panics if `mask` has zero or multiple bits set, only in
	/// debug builds. It does not inspect `mask` in release builds.
	///
	/// [`::new`]: #method.new
	#[cfg_attr(debug_assertions, inline)]
	#[cfg_attr(not(debug_assertions), inline(always))]
	pub unsafe fn new_unchecked(mask: T) -> Self {
		debug_assert!(
			mask.count_ones() == 1,
			"Masks are required to have exactly one set bit: {:0>1$b}",
			mask,
			T::BITS as usize,
		);
		Self { mask }
	}
}

impl<T> Deref for BitMask<T>
where T: BitStore {
	type Target = T;

	fn deref(&self) -> &Self::Target {
		&self.mask
	}
}

/** Internal convenience trait for wrapping numbers with appropriate markers.

This trait must only be used on values that are known to be valid for their
context. It provides an internal-only shorthand for wrapping integer literals
and known-good values in marker types.

It is only implemented on `u8`.
**/
pub(crate) trait Indexable {
	/// Wraps a value as a `BitIdx<T>`.
	fn idx<T>(self) -> BitIdx<T>
	where T: BitStore;

	/// Wraps a value as a `BitTail<T>`.
	fn tail<T>(self) -> BitTail<T>
	where T: BitStore;

	/// Wraps a value as a `BitPos<T>`.
	fn pos<T>(self) -> BitPos<T>
	where T: BitStore;
}

impl Indexable for u8 {
	fn idx<T>(self) -> BitIdx<T>
	where T: BitStore {
		unsafe { BitIdx::<T>::new_unchecked(self) }
	}

	fn tail<T>(self) -> BitTail<T>
	where T: BitStore {
		unsafe { BitTail::<T>::new_unchecked(self) }
	}

	fn pos<T>(self) -> BitPos<T>
	where T: BitStore {
		unsafe { BitPos::<T>::new_unchecked(self) }
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn jump_far_up() {
		//  isize::max_value() is 0x7f...ff, so the result bit will be one less
		//  than the start bit.
		for n in 1 .. 8 {
			let (elt, bit) = n.idx::<u8>().offset(isize::max_value());
			assert_eq!(elt, (isize::max_value() >> u8::INDX) + 1);
			assert_eq!(*bit, n - 1);
		}
		let (elt, bit) = 0u8.idx::<u8>().offset(isize::max_value());
		assert_eq!(elt, isize::max_value() >> u8::INDX);
		assert_eq!(*bit, 7);
	}

	#[test]
	fn jump_far_down() {
		//  isize::min_value() is 0x80...00, so the result bit will be equal to
		//  the start bit
		for n in 0 .. 8 {
			let (elt, bit) = n.idx::<u8>().offset(isize::min_value());
			assert_eq!(elt, isize::min_value() >> u8::INDX);
			assert_eq!(*bit, n);
		}
	}

	#[test]
	fn incr() {
		assert_eq!(6u8.idx::<u8>().incr(), (7u8.idx::<u8>(), false));
		assert_eq!(7u8.idx::<u8>().incr(), (0u8.idx::<u8>(), true));

		assert_eq!(14u8.idx::<u16>().incr(), (15u8.idx::<u16>(), false));
		assert_eq!(15u8.idx::<u16>().incr(), (0u8.idx::<u16>(), true));

		assert_eq!(30u8.idx::<u32>().incr(), (31u8.idx::<u32>(), false));
		assert_eq!(31u8.idx::<u32>().incr(), (0u8.idx::<u32>(), true));

		#[cfg(target_pointer_width = "64")]
		assert_eq!(62u8.idx::<u64>().incr(), (63u8.idx::<u64>(), false));
		#[cfg(target_pointer_width = "64")]
		assert_eq!(63u8.idx::<u64>().incr(), (0u8.idx::<u64>(), true));
	}

	#[test]
	fn decr() {
		assert_eq!(1u8.idx::<u8>().decr(), (0u8.idx::<u8>(), false));
		assert_eq!(0u8.idx::<u8>().decr(), (7u8.idx::<u8>(), true));

		assert_eq!(1u8.idx::<u16>().decr(), (0u8.idx::<u16>(), false));
		assert_eq!(0u8.idx::<u16>().decr(), (15u8.idx::<u16>(), true));

		assert_eq!(1u8.idx::<u32>().decr(), (0u8.idx::<u32>(), false));
		assert_eq!(0u8.idx::<u32>().decr(), (31u8.idx::<u32>(), true));

		#[cfg(target_pointer_width = "64")]
		assert_eq!(1u8.idx::<u64>().decr(), (0u8.idx::<u64>(), false));
		#[cfg(target_pointer_width = "64")]
		assert_eq!(0u8.idx::<u64>().decr(), (63u8.idx::<u64>(), true));
	}
}