1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
//! Traits for dealing with bitset endianness.
//!
//! Endianness typically refers to the order in which bytes are in memory, but
//! here the concept refers to the order in which bits are addressed when you
//! consider the binary literal of a primitive.
//!
//! * [`BigEndian`] where the bit furthest to the left refers to the highest
//!   index.
//! * [`LittleEndian`] where the bit furthest to the left refers to the lowest
//!   index.

#![allow(clippy::module_name_repetitions)]

use crate::number::Number;

mod sealed {
    pub trait Sealed {}
    impl Sealed for super::BigEndian {}
    impl Sealed for super::LittleEndian {}
}

/// Trait governing endian-dependent operations for a primitive.
pub trait Endian: self::sealed::Sealed {
    #[doc(hidden)]
    fn mask<T>(index: u32) -> T
    where
        T: Number;

    #[doc(hidden)]
    fn ones<T>(value: T) -> u32
    where
        T: Number;

    #[doc(hidden)]
    fn ones_rev<T>(value: T) -> u32
    where
        T: Number;

    #[doc(hidden)]
    fn zeros<T>(value: T) -> u32
    where
        T: Number;

    #[doc(hidden)]
    fn zeros_rev<T>(value: T) -> u32
    where
        T: Number;
}

/// Big-endian indexing for bit sets.
///
/// This can be used in combination with methods such as [`Bits::test_bit_in`].
///
/// Big-endian indexing is constructed increasingly from right to left for
/// individual primitives, such as the following [`u8`] literal:
///
/// ```text
/// 0b0010_0010u8
///     ^    ^- index 1
///     '------ index 5
/// ```
///
/// Arrays are treated the same as expected where the index grows from smallest
/// to largest address, but each interior primitive is indexed in big endian
/// ordering.
///
/// ```text
///  0 --------- 8  8 -------- 15
/// [0b0010_0010u8, 0b1000_0000u8]
///      ^    ^       ^- index 15
///      |    '--------- index 1
///      '-------------- index 5
/// ```
///
/// [`Bits::test_bit_in`]: crate::Bits::test_bit_in
#[non_exhaustive]
pub struct BigEndian;

impl Endian for BigEndian {
    #[inline]
    fn mask<T>(index: u32) -> T
    where
        T: Number,
    {
        T::BIT_RIGHT.wrapping_shl(index)
    }

    #[inline]
    fn ones<T>(value: T) -> u32
    where
        T: Number,
    {
        value.trailing_ones()
    }

    #[inline]
    fn ones_rev<T>(value: T) -> u32
    where
        T: Number,
    {
        value.leading_ones()
    }

    #[inline]
    fn zeros<T>(value: T) -> u32
    where
        T: Number,
    {
        value.trailing_zeros()
    }

    #[inline]
    fn zeros_rev<T>(value: T) -> u32
    where
        T: Number,
    {
        value.leading_zeros()
    }
}

/// Little-endian indexing for bit sets.
///
/// This can be used in combination with methods such as [`Bits::test_bit_in`].
///
/// Little-endian indexing is constructed increasingly from left to right for
/// individual primitives, such as the following [`u8`] literal:
///
/// ```text
/// 0b0010_0010u8
///     ^    ^- index 6
///     '------ index 2
/// ```
///
/// Arrays are treated the same as expected where the index grows from smallest
/// to largest address:
///
/// ```text
///  0 --------- 8  8 -------- 15
/// [0b0010_0010u8, 0b1000_0000u8]
///      ^    ^       ^- index 8
///      |    '--------- index 6
///      '-------------- index 2
/// ```
///
/// [`Bits::test_bit_in`]: crate::Bits::test_bit_in
#[non_exhaustive]
pub struct LittleEndian;

impl Endian for LittleEndian {
    #[inline]
    fn mask<T>(index: u32) -> T
    where
        T: Number,
    {
        T::BIT_LEFT.wrapping_shr(index)
    }

    #[inline]
    fn ones<T>(value: T) -> u32
    where
        T: Number,
    {
        value.leading_ones()
    }

    #[inline]
    fn ones_rev<T>(value: T) -> u32
    where
        T: Number,
    {
        value.trailing_ones()
    }

    #[inline]
    fn zeros<T>(value: T) -> u32
    where
        T: Number,
    {
        value.leading_zeros()
    }

    #[inline]
    fn zeros_rev<T>(value: T) -> u32
    where
        T: Number,
    {
        value.trailing_ones()
    }
}

/// The default endianness to use.
pub type DefaultEndian = BigEndian;