1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// Copyright 2017 Brian Langenberger
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Traits and helpers for bitstream handling functionality
//!
//! Bitstream readers are for reading signed and unsigned integer
//! values from a stream whose sizes may not be whole bytes.
//! Bitstream writers are for writing signed and unsigned integer
//! values to a stream, also potentially un-aligned at a whole byte.
//!
//! Both big-endian and little-endian streams are supported.
//!
//! The only requirement for wrapped reader streams is that they must
//! implement the `Read` trait, and the only requirement
//! for writer streams is that they must implement the `Write` trait.
//!
//! In addition, reader streams do not consume any more bytes
//! from the underlying reader than necessary, buffering only a
//! single partial byte as needed.
//! Writer streams also write out all whole bytes as they are accumulated.
//!
//! Readers and writers are also designed to work with integer
//! types of any possible size.
//! Many of Rust's built-in integer types are supported by default.
//!
//! ## Type Sizes
//!
//! Because both the type sizes and bit counts are variable,
//! it is the responsibity of the programmer to ensure that
//! the capacity of one's variables does not exceed the
//! requested bit count when reading or writing.
//! Otherwise, an overflow error panic may occur.
//!
//! For example, reading 8 bits from the stream to a 32-bit variable
//! is harmless (the topmost 24 bits are left empty),
//! but reading 32 bits from the stream to an 8-bit variable
//! may result in a panic.
//! Similarly, writing a 32-bit variable to 8 bits is also harmless
//! (the topmost 24 bits are ignored), but writing an 8-bit variable
//! to 32 bits in the stream may cause a panic.

use std::ops::{Shl, ShlAssign, Shr, ShrAssign, Rem, RemAssign, BitOrAssign};
use std::fmt::Debug;

pub mod read;
pub mod write;
pub mod huffman;

pub use read::BitRead;
pub use read::BitReaderBE;
pub use read::BitReaderLE;

pub use write::BitWrite;
pub use write::BitWriterBE;
pub use write::BitWriterLE;


/// This trait extends many common integer types (both unsigned and signed)
/// with a few trivial methods so that they can be used
/// with the bitstream handling traits.
pub trait Numeric: Sized + Copy + Default + Debug +
    Shl<u32,Output=Self> + ShlAssign<u32> +
    Shr<u32,Output=Self> + ShrAssign<u32> +
    Rem<Self,Output=Self> + RemAssign<Self> +
    BitOrAssign<Self> {

    /// The value of 1 in this type
    fn one() -> Self;

    /// Returns true if this value is 0, in its type
    fn is_zero(self) -> bool;

    /// Returns a `u8` value in this type
    fn from_u8(u: u8) -> Self;

    /// Assuming 0 <= value < 256, returns this value as a `u8` type
    fn to_u8(self) -> u8;
}

macro_rules! define_numeric {
    ($t:ty) => {
        impl Numeric for $t {
            #[inline(always)]
            fn one() -> Self {1}
            #[inline(always)]
            fn is_zero(self) -> bool {self == 0}
            #[inline(always)]
            fn from_u8(u: u8) -> Self {u as $t}
            #[inline(always)]
            fn to_u8(self) -> u8 {self as u8}
        }
    }
}

/// This trait extends many common signed integer types
/// so that they can be used with the bitstream handling traits.
pub trait SignedNumeric: Numeric {
    /// Returns true if this value is negative
    fn is_negative(self) -> bool;

    /// Given a two-complement positive value and certain number of bits,
    /// returns this value as a negative number.
    fn as_negative(self, bits: u32) -> Self;

    /// Given a negative value and a certain number of bits,
    /// returns this value as a twos-complement positive number.
    fn as_unsigned(self, bits: u32) -> Self;
}

macro_rules! define_signed_numeric {
    ($t:ty) => {
        impl SignedNumeric for $t {
            #[inline(always)]
            fn is_negative(self) -> bool {self < 0}
            #[inline(always)]
            fn as_negative(self, bits: u32) -> Self {self + (-1 << (bits - 1))}
            #[inline(always)]
            fn as_unsigned(self, bits: u32) -> Self {self - (-1 << (bits - 1))}
        }
    }
}

define_numeric!(u8);
define_numeric!(i8);
define_numeric!(u16);
define_numeric!(i16);
define_numeric!(u32);
define_numeric!(i32);
define_numeric!(u64);
define_numeric!(i64);
define_numeric!(usize);

define_signed_numeric!(i8);
define_signed_numeric!(i16);
define_signed_numeric!(i32);
define_signed_numeric!(i64);

/// This trait is for treating numeric types as a queue of bits
/// which values can be pushed to and popped from in
/// order to implement bitstream readers and writers.
pub trait BitQueue<N: Numeric> {
    /// Discards queue's current status and sets it to new bits and value
    fn set(&mut self, value: N, bits: u32);

    /// Consumes queue and returns its internal value
    fn value(self) -> N;

    /// Current length of queue, in bits
    fn len(&self) -> u32;

    /// Whether or not the queue is empty
    #[inline(always)]
    fn is_empty(&self) -> bool {self.len() == 0}

    /// Discards queue's current status and sets bits and value to 0
    #[inline(always)]
    fn clear(&mut self) {self.set(N::default(), 0)}

    /// Pushes a new value onto the back of the queue
    /// using the given number of bits.
    /// May panic if the total number of bits exceeds
    /// the size of the type being pushed onto.
    fn push(&mut self, bits: u32, value: N);

    /// Pops a value from the front of the queue
    /// with the given number of bits.
    /// Returns queue's whole contents if the requested number of bits
    /// exceeds the size of the queue.
    fn pop(&mut self, bits: u32) -> N;

    /// Drops the given number of bits from the queue without returning them
    fn drop(&mut self, bits: u32);
}

/// A wrapper around some unsigned type to turn it into a big-endian queue.
pub struct BitQueueBE<N: Numeric> {value: N, bits: u32}

impl<N: Numeric> BitQueueBE<N> {
    /// Wraps an existing value in a big-endian bit queue
    /// with the given number of bits.
    /// It is up to the programmer to ensure that the value
    /// is not larger than the given number of bits can contain.
    #[inline]
    pub fn from_value(value: N, bits: u32) -> BitQueueBE<N> {
        BitQueueBE{value: value, bits: bits}
    }

    /// Creates an empty queue with a value and bit count of 0.
    #[inline]
    pub fn new() -> BitQueueBE<N> {
        BitQueueBE{value: N::default(), bits: 0}
    }
}

impl<N: Numeric> BitQueue<N> for BitQueueBE<N> {
    #[inline]
    fn set(&mut self, value: N, bits: u32) {
        self.value = value; self.bits = bits;
    }

    #[inline(always)]
    fn value(self) -> N {self.value}

    #[inline(always)]
    fn len(&self) -> u32 {self.bits}

    fn push(&mut self, bits: u32, value: N) {
        if !self.value.is_zero() {
            self.value <<= bits;
        }
        self.value |= value;
        self.bits += bits;
    }

    #[inline]
    fn pop(&mut self, bits: u32) -> N {
        if bits < self.bits {
            let offset = self.bits - bits;
            let to_return = self.value >> offset;
            self.value %= N::one() << offset;
            self.bits -= bits;
            to_return
        } else {
            let to_return = self.value;
            self.value = N::default();
            self.bits = 0;
            to_return
        }
    }

    #[inline]
    fn drop(&mut self, bits: u32) {
        if bits < self.bits {
            self.value %= N::one() << (self.bits - bits);
            self.bits -= bits;
        } else {
            self.value = N::default();
            self.bits = 0;
        }
    }
}

impl BitQueueBE<u8> {
    #[inline(always)]
    fn all_0(&self) -> bool {self.value == 0}

    #[inline(always)]
    fn all_1(&self) -> bool {self.value == ((1u16 << self.bits) - 1) as u8}

    /// pops all 0 bits until the next 1 bit
    /// and returns the amount of 0 bits popped
    #[inline]
    fn pop_0(&mut self) -> u32 {
        let zeroes = self.value.leading_zeros() - (8 - self.bits);
        self.drop(zeroes + 1);
        zeroes
    }

    /// pops all 1 bits until the next 0 bit
    /// and returns the amount of 1 bits popped
    #[inline]
    fn pop_1(&mut self) -> u32 {
        let zeroes =
            (self.value ^ ((1 << self.bits) - 1) as u8).leading_zeros() -
            (8 - self.bits);
        self.drop(zeroes + 1);
        zeroes
    }
}

/// A wrapper around some unsigned type to turn it into a little-endian queue.
pub struct BitQueueLE<N: Numeric> {value: N, bits: u32}

impl<N: Numeric> BitQueueLE<N> {
    /// Wraps an existing value in a little-endian bit queue
    /// with the given number of bits.
    /// It is up to the programmer to ensure that the value
    /// is not larger than the given number of bits can contain.
    #[inline]
    pub fn from_value(value: N, bits: u32) -> BitQueueLE<N> {
        BitQueueLE{value: value, bits: bits}
    }

    /// Creates an empty queue with a value and bit count of 0.
    #[inline]
    pub fn new() -> BitQueueLE<N> {
        BitQueueLE{value: N::default(), bits: 0}
    }
}

impl<N: Numeric> BitQueue<N> for BitQueueLE<N> {
    #[inline]
    fn set(&mut self, value: N, bits: u32) {
        self.value = value; self.bits = bits;
    }

    #[inline(always)]
    fn value(self) -> N {self.value}

    #[inline(always)]
    fn len(&self) -> u32 {self.bits}

    #[inline]
    fn push(&mut self, bits: u32, mut value: N) {
        value <<= self.bits;
        self.value |= value;
        self.bits += bits;
    }

    #[inline]
    fn pop(&mut self, bits: u32) -> N {
        if bits < self.bits {
            let to_return = self.value % (N::one() << bits);
            self.value >>= bits;
            self.bits -= bits;
            to_return
        } else {
            let to_return = self.value;
            self.value = N::default();
            self.bits = 0;
            to_return
        }
    }

    #[inline]
    fn drop(&mut self, bits: u32) {
        if bits < self.bits {
            self.value >>= bits;
            self.bits -= bits;
        } else {
            self.value = N::default();
            self.bits = 0;
        }
    }
}

impl BitQueueLE<u8> {
    #[inline(always)]
    fn all_0(&self) -> bool {self.value == 0}

    #[inline(always)]
    fn all_1(&self) -> bool {self.value == ((1u16 << self.bits) - 1) as u8}

    /// pops all 0 bits until the next 1 bit
    /// and returns the amount of 0 bits popped
    #[inline]
    fn pop_0(&mut self) -> u32 {
        let zeroes = self.value.trailing_zeros();
        self.drop(zeroes + 1);
        zeroes
    }

    /// pops all 1 bits until the next 0 bit
    /// and returns the amount of 1 bits popped
    #[inline]
    fn pop_1(&mut self) -> u32 {
        let zeroes = (self.value ^ 0xFF).trailing_zeros();
        self.drop(zeroes + 1);
        zeroes
    }
}