1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
// Rust Bitcoin Library
// Written in 2014 by
//     Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! Consensus-encodable types
//!
//! This is basically a replacement of the `Encodable` trait which does
//! normalization for endianness, etc., to ensure that the encoding
//! matches for endianness, etc., to ensure that the encoding matches
//! the network consensus encoding.
//!
//! Essentially, anything that must go on the -disk- or -network- must
//! be encoded using the `Encodable` trait, since this data
//! must be the same for all systems. Any data going to the -user-, e.g.
//! over JSONRPC, should use the ordinary `Encodable` trait. (This
//! should also be the same across systems, of course, but has some
//! critical differences from the network format, e.g. scripts come
//! with an opcode decode, hashes are big-endian, numbers are typically
//! big-endian decimals, etc.)
//!

use std::collections::HashMap;
use std::hash::Hash;
use std::{mem, u32};

use util::hash::Sha256dHash;

use std::error;
use std::fmt;
use std::io;
use std::io::{Cursor, Read, Write};
use byteorder::{LittleEndian, WriteBytesExt, ReadBytesExt};
use hex::encode as hex_encode;

use bitcoin_bech32;

use util::base58;

/// Encoding error
#[derive(Debug)]
pub enum Error {
    /// And I/O error
    Io(io::Error),
    /// Base58 encoding error
    Base58(base58::Error),
    /// Bech32 encoding error
    Bech32(bitcoin_bech32::Error),
    /// Error from the `byteorder` crate
    ByteOrder(io::Error),
    /// Network magic was not expected
    UnexpectedNetworkMagic {
        /// The expected network magic
        expected: u32,
        /// The unexpected network magic
        actual: u32,
    },
    /// Tried to allocate an oversized vector
    OversizedVectorAllocation{
        /// The capacity requested
        requested: usize,
        /// The maximum capacity
        max: usize,
    },
    /// Checksum was invalid
    InvalidChecksum {
        /// The expected checksum
        expected: [u8; 4],
        /// The invalid checksum
        actual: [u8; 4],
    },
    /// Network magic was unknown
    UnknownNetworkMagic(u32),
    /// Parsing error
    ParseFailed(&'static str),
    /// Unsupported witness version
    UnsupportedWitnessVersion(u8),
    /// Unsupported Segwit flag
    UnsupportedSegwitFlag(u8),
    /// Unrecognized network command
    UnrecognizedNetworkCommand(String),
    /// Unexpected hex digit
    UnexpectedHexDigit(char),
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Error::Io(ref e) => fmt::Display::fmt(e, f),
            Error::Base58(ref e) => fmt::Display::fmt(e, f),
            Error::Bech32(ref e) => fmt::Display::fmt(e, f),
            Error::ByteOrder(ref e) => fmt::Display::fmt(e, f),
            Error::UnexpectedNetworkMagic { expected: ref e, actual: ref a } => write!(f, "{}: expected {}, actual {}", error::Error::description(self), e, a),
            Error::OversizedVectorAllocation { requested: ref r, max: ref m } => write!(f, "{}: requested {}, maximum {}", error::Error::description(self), r, m),
            Error::InvalidChecksum { expected: ref e, actual: ref a } => write!(f, "{}: expected {}, actual {}", error::Error::description(self), hex_encode(e), hex_encode(a)),
            Error::UnknownNetworkMagic(ref m) => write!(f, "{}: {}", error::Error::description(self), m),
            Error::ParseFailed(ref e) => write!(f, "{}: {}", error::Error::description(self), e),
            Error::UnsupportedWitnessVersion(ref wver) => write!(f, "{}: {}", error::Error::description(self), wver),
            Error::UnsupportedSegwitFlag(ref swflag) => write!(f, "{}: {}", error::Error::description(self), swflag),
            Error::UnrecognizedNetworkCommand(ref nwcmd) => write!(f, "{}: {}", error::Error::description(self), nwcmd),
            Error::UnexpectedHexDigit(ref d) => write!(f, "{}: {}", error::Error::description(self), d),
        }
    }
}

impl error::Error for Error {
    fn cause(&self) -> Option<&error::Error> {
        match *self {
            Error::Io(ref e) => Some(e),
            Error::Base58(ref e) => Some(e),
            Error::Bech32(ref e) => Some(e),
            Error::ByteOrder(ref e) => Some(e),
            Error::UnexpectedNetworkMagic { .. }
            | Error::OversizedVectorAllocation { .. }
            | Error::InvalidChecksum { .. }
            | Error::UnknownNetworkMagic(..)
            | Error::ParseFailed(..)
            | Error::UnsupportedWitnessVersion(..)
            | Error::UnsupportedSegwitFlag(..)
            | Error::UnrecognizedNetworkCommand(..)
            | Error::UnexpectedHexDigit(..) => None,
        }
    }

    fn description(&self) -> &str {
        match *self {
            Error::Io(ref e) => e.description(),
            Error::Base58(ref e) => e.description(),
            Error::Bech32(ref e) => e.description(),
            Error::ByteOrder(ref e) => e.description(),
            Error::UnexpectedNetworkMagic { .. } => "unexpected network magic",
            Error::OversizedVectorAllocation { .. } => "allocation of oversized vector requested",
            Error::InvalidChecksum { .. } => "invalid checksum",
            Error::UnknownNetworkMagic(..) => "unknown network magic",
            Error::ParseFailed(..) => "parse failed",
            Error::UnsupportedWitnessVersion(..) => "unsupported witness version",
            Error::UnsupportedSegwitFlag(..) => "unsupported segwit version",
            Error::UnrecognizedNetworkCommand(..) => "unrecognized network command",
            Error::UnexpectedHexDigit(..) => "unexpected hex digit",
        }
    }
}

#[doc(hidden)]
impl From<base58::Error> for Error {
    fn from(e: base58::Error) -> Error {
        Error::Base58(e)
    }
}

#[doc(hidden)]
impl From<bitcoin_bech32::Error> for Error {
    fn from(e: bitcoin_bech32::Error) -> Error {
        Error::Bech32(e)
    }
}


#[doc(hidden)]
impl From<io::Error> for Error {
    fn from(error: io::Error) -> Self {
        Error::Io(error)
    }
}

/// Encode an object into a vector
pub fn serialize<T: ?Sized>(data: &T) -> Vec<u8>
     where T: Encodable<Cursor<Vec<u8>>>,
{
    let mut encoder = Cursor::new(vec![]);
    data.consensus_encode(&mut encoder).unwrap();
    encoder.into_inner()
}

/// Encode an object into a hex-encoded string
pub fn serialize_hex<T: ?Sized>(data: &T) -> String
     where T: Encodable<Cursor<Vec<u8>>>
{
    hex_encode(serialize(data))
}

/// Deserialize an object from a vector, will error if said deserialization
/// doesn't consume the entire vector.
pub fn deserialize<'a, T>(data: &'a [u8]) -> Result<T, Error>
     where T: Decodable<Cursor<&'a [u8]>>
{
    let mut decoder = Cursor::new(data);
    let rv = Decodable::consensus_decode(&mut decoder)?;

    // Fail if data is not consumed entirely.
    if decoder.position() == data.len() as u64 {
        Ok(rv)
    } else {
        Err(Error::ParseFailed("data not consumed entirely when explicitly deserializing"))
    }
}

/// A simple Encoder trait
pub trait Encoder {
    /// Output a 64-bit uint
    fn emit_u64(&mut self, v: u64) -> Result<(), Error>;
    /// Output a 32-bit uint
    fn emit_u32(&mut self, v: u32) -> Result<(), Error>;
    /// Output a 16-bit uint
    fn emit_u16(&mut self, v: u16) -> Result<(), Error>;
    /// Output a 8-bit uint
    fn emit_u8(&mut self, v: u8) -> Result<(), Error>;

    /// Output a 64-bit int
    fn emit_i64(&mut self, v: i64) -> Result<(), Error>;
    /// Output a 32-bit int
    fn emit_i32(&mut self, v: i32) -> Result<(), Error>;
    /// Output a 16-bit int
    fn emit_i16(&mut self, v: i16) -> Result<(), Error>;
    /// Output a 8-bit int
    fn emit_i8(&mut self, v: i8) -> Result<(), Error>;

    /// Output a boolean
    fn emit_bool(&mut self, v: bool) -> Result<(), Error>;
}

/// A simple Decoder trait
pub trait Decoder {
    /// Read a 64-bit uint
    fn read_u64(&mut self) -> Result<u64, Error>;
    /// Read a 32-bit uint
    fn read_u32(&mut self) -> Result<u32, Error>;
    /// Read a 16-bit uint
    fn read_u16(&mut self) -> Result<u16, Error>;
    /// Read a 8-bit uint
    fn read_u8(&mut self) -> Result<u8, Error>;

    /// Read a 64-bit int
    fn read_i64(&mut self) -> Result<i64, Error>;
    /// Read a 32-bit int
    fn read_i32(&mut self) -> Result<i32, Error>;
    /// Read a 16-bit int
    fn read_i16(&mut self) -> Result<i16, Error>;
    /// Read a 8-bit int
    fn read_i8(&mut self) -> Result<i8, Error>;

    /// Read a boolean
    fn read_bool(&mut self) -> Result<bool, Error>;
}

macro_rules! encoder_fn {
    ($name:ident, $val_type:ty, $writefn:ident) => {
        #[inline]
        fn $name(&mut self, v: $val_type) -> Result<(), Error> {
            WriteBytesExt::$writefn::<LittleEndian>(self, v).map_err(Error::Io)
        }
    }
}

macro_rules! decoder_fn {
    ($name:ident, $val_type:ty, $readfn:ident) => {
        #[inline]
        fn $name(&mut self) -> Result<$val_type, Error> {
            ReadBytesExt::$readfn::<LittleEndian>(self).map_err(Error::Io)
        }
    }
}

impl<W: Write> Encoder for W {
    encoder_fn!(emit_u64, u64, write_u64);
    encoder_fn!(emit_u32, u32, write_u32);
    encoder_fn!(emit_u16, u16, write_u16);
    encoder_fn!(emit_i64, i64, write_i64);
    encoder_fn!(emit_i32, i32, write_i32);
    encoder_fn!(emit_i16, i16, write_i16);

    #[inline]
    fn emit_i8(&mut self, v: i8) -> Result<(), Error> {
        self.write_i8(v).map_err(Error::Io)
    }
    #[inline]
    fn emit_u8(&mut self, v: u8) -> Result<(), Error> {
        self.write_u8(v).map_err(Error::Io)
    }
    #[inline]
    fn emit_bool(&mut self, v: bool) -> Result<(), Error> {
        self.write_i8(if v {1} else {0}).map_err(Error::Io)
    }
}

impl<R: Read> Decoder for R {
    decoder_fn!(read_u64, u64, read_u64);
    decoder_fn!(read_u32, u32, read_u32);
    decoder_fn!(read_u16, u16, read_u16);
    decoder_fn!(read_i64, i64, read_i64);
    decoder_fn!(read_i32, i32, read_i32);
    decoder_fn!(read_i16, i16, read_i16);

    #[inline]
    fn read_u8(&mut self) -> Result<u8, Error> {
        ReadBytesExt::read_u8(self).map_err(Error::Io)
    }
    #[inline]
    fn read_i8(&mut self) -> Result<i8, Error> {
        ReadBytesExt::read_i8(self).map_err(Error::Io)
    }
    #[inline]
    fn read_bool(&mut self) -> Result<bool, Error> {
        Decoder::read_i8(self).map(|bit| bit != 0)
    }
}

/// Maximum size, in bytes, of a vector we are allowed to decode
pub const MAX_VEC_SIZE: usize = 32 * 1024 * 1024;

/// Data which can be encoded in a consensus-consistent way
pub trait Encodable<S: Encoder> {
    /// Encode an object with a well-defined format, should only ever error if
    /// the underlying Encoder errors.
    fn consensus_encode(&self, e: &mut S) -> Result<(), self::Error>;
}

/// Data which can be encoded in a consensus-consistent way
pub trait Decodable<D: Decoder>: Sized {
    /// Decode an object with a well-defined format
    fn consensus_decode(d: &mut D) -> Result<Self, self::Error>;
}

/// A variable-length unsigned integer
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug)]
pub struct VarInt(pub u64);

/// Data which must be preceded by a 4-byte checksum
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct CheckedData(pub Vec<u8>);

// Primitive types
macro_rules! impl_int_encodable{
    ($ty:ident, $meth_dec:ident, $meth_enc:ident) => (
        impl<D: Decoder> Decodable<D> for $ty {
            #[inline]
            fn consensus_decode(d: &mut D) -> Result<$ty, self::Error> { d.$meth_dec().map($ty::from_le) }
        }

        impl<S: Encoder> Encodable<S> for $ty {
            #[inline]
            fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> { s.$meth_enc(self.to_le()) }
        }
    )
}

impl_int_encodable!(u8,  read_u8,  emit_u8);
impl_int_encodable!(u16, read_u16, emit_u16);
impl_int_encodable!(u32, read_u32, emit_u32);
impl_int_encodable!(u64, read_u64, emit_u64);
impl_int_encodable!(i8,  read_i8,  emit_i8);
impl_int_encodable!(i16, read_i16, emit_i16);
impl_int_encodable!(i32, read_i32, emit_i32);
impl_int_encodable!(i64, read_i64, emit_i64);

impl VarInt {
    /// Gets the length of this VarInt when encoded.
    /// Returns 1 for 0...0xFC, 3 for 0xFD...(2^16-1), 5 for 0x10000...(2^32-1),
    /// and 9 otherwise.
    #[inline]
    pub fn encoded_length(&self) -> u64 {
        match self.0 {
            0...0xFC             => { 1 }
            0xFD...0xFFFF        => { 3 }
            0x10000...0xFFFFFFFF => { 5 }
            _                    => { 9 }
        }
    }
}

impl<S: Encoder> Encodable<S> for VarInt {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> {
        match self.0 {
            0...0xFC             => { (self.0 as u8).consensus_encode(s) }
            0xFD...0xFFFF        => { s.emit_u8(0xFD)?; (self.0 as u16).consensus_encode(s) }
            0x10000...0xFFFFFFFF => { s.emit_u8(0xFE)?; (self.0 as u32).consensus_encode(s) }
            _                    => { s.emit_u8(0xFF)?; (self.0 as u64).consensus_encode(s) }
        }
    }
}

impl<D: Decoder> Decodable<D> for VarInt {
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<VarInt, self::Error> {
        let n = d.read_u8()?;
        match n {
            0xFF => {
                let x = d.read_u64()?;
                if x < 0x100000000 {
                    Err(self::Error::ParseFailed("non-minimal varint"))
                } else {
                    Ok(VarInt(x))
                }
            }
            0xFE => {
                let x = d.read_u32()?;
                if x < 0x10000 {
                    Err(self::Error::ParseFailed("non-minimal varint"))
                } else {
                    Ok(VarInt(x as u64))
                }
            }
            0xFD => {
                let x = d.read_u16()?;
                if x < 0xFD {
                    Err(self::Error::ParseFailed("non-minimal varint"))
                } else {
                    Ok(VarInt(x as u64))
                }
            }
            n => Ok(VarInt(n as u64))
        }
    }
}


// Booleans
impl<S: Encoder> Encodable<S> for bool {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> { s.emit_u8(if *self {1} else {0}) }
}

impl<D: Decoder> Decodable<D> for bool {
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<bool, self::Error> { d.read_u8().map(|n| n != 0) }
}

// Strings
impl<S: Encoder> Encodable<S> for String {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> {
        self.as_bytes().consensus_encode(s)
    }
}

impl<D: Decoder> Decodable<D> for String {
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<String, self::Error> {
        String::from_utf8(Decodable::consensus_decode(d)?)
            .map_err(|_| self::Error::ParseFailed("String was not valid UTF8"))
    }
}


// Arrays
macro_rules! impl_array {
    ( $size:expr ) => (
        impl<S: Encoder, T: Encodable<S>> Encodable<S> for [T; $size] {
            #[inline]
            fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> {
                for i in self.iter() { i.consensus_encode(s)?; }
                Ok(())
            }
        }

        impl<D: Decoder, T:Decodable<D> + Copy> Decodable<D> for [T; $size] {
            #[inline]
            fn consensus_decode(d: &mut D) -> Result<[T; $size], self::Error> {
                // Set everything to the first decode
                let mut ret = [Decodable::consensus_decode(d)?; $size];
                // Set the rest
                for item in ret.iter_mut().take($size).skip(1) { *item = Decodable::consensus_decode(d)?; }
                Ok(ret)
            }
        }
    );
}

impl_array!(2);
impl_array!(4);
impl_array!(8);
impl_array!(12);
impl_array!(16);
impl_array!(32);

impl<S: Encoder, T: Encodable<S>> Encodable<S> for [T] {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> {
        VarInt(self.len() as u64).consensus_encode(s)?;
        for c in self.iter() { c.consensus_encode(s)?; }
        Ok(())
    }
}

// Cannot decode a slice

// Vectors
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Vec<T> {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> { (&self[..]).consensus_encode(s) }
}

impl<D: Decoder, T: Decodable<D>> Decodable<D> for Vec<T> {
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<Vec<T>, self::Error> {
        let len = VarInt::consensus_decode(d)?.0;
        let byte_size = (len as usize)
                            .checked_mul(mem::size_of::<T>())
                            .ok_or(self::Error::ParseFailed("Invalid length"))?;
        if byte_size > MAX_VEC_SIZE {
            return Err(self::Error::OversizedVectorAllocation { requested: byte_size, max: MAX_VEC_SIZE })
        }
        let mut ret = Vec::with_capacity(len as usize);
        for _ in 0..len { ret.push(Decodable::consensus_decode(d)?); }
        Ok(ret)
    }
}

impl<S: Encoder, T: Encodable<S>> Encodable<S> for Box<[T]> {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> { (&self[..]).consensus_encode(s) }
}

impl<D: Decoder, T: Decodable<D>> Decodable<D> for Box<[T]> {
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<Box<[T]>, self::Error> {
        let len = VarInt::consensus_decode(d)?.0;
        let len = len as usize;
        if len > MAX_VEC_SIZE {
            return Err(self::Error::OversizedVectorAllocation { requested: len, max: MAX_VEC_SIZE })
        }
        let mut ret = Vec::with_capacity(len);
        for _ in 0..len { ret.push(Decodable::consensus_decode(d)?); }
        Ok(ret.into_boxed_slice())
    }
}

// Options (encoded as vectors of length 0 or 1)
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Option<T> {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> {
        match *self {
            Some(ref data) => {
                1u8.consensus_encode(s)?;
                data.consensus_encode(s)?;
            }
            None => { 0u8.consensus_encode(s)?; }
        }
        Ok(())
    }
}

impl<D: Decoder, T:Decodable<D>> Decodable<D> for Option<T> {
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<Option<T>, self::Error> {
        let bit: u8 = Decodable::consensus_decode(d)?;
        Ok(if bit != 0 {
            Some(Decodable::consensus_decode(d)?)
        } else {
            None
        })
    }
}


/// Do a double-SHA256 on some data and return the first 4 bytes
fn sha2_checksum(data: &[u8]) -> [u8; 4] {
    let checksum = Sha256dHash::from_data(data);
    [checksum[0], checksum[1], checksum[2], checksum[3]]
}

// Checked data
impl<S: Encoder> Encodable<S> for CheckedData {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> {
        (self.0.len() as u32).consensus_encode(s)?;
        sha2_checksum(&self.0).consensus_encode(s)?;
        // We can't just pass to the slice encoder since it'll insert a length
        for ch in &self.0 {
            ch.consensus_encode(s)?;
        }
        Ok(())
    }
}

impl<D: Decoder> Decodable<D> for CheckedData {
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<CheckedData, self::Error> {
        let len: u32 = Decodable::consensus_decode(d)?;
        let checksum: [u8; 4] = Decodable::consensus_decode(d)?;
        let mut ret = Vec::with_capacity(len as usize);
        for _ in 0..len { ret.push(Decodable::consensus_decode(d)?); }
        let expected_checksum = sha2_checksum(&ret);
        if expected_checksum != checksum {
            Err(self::Error::InvalidChecksum {
                expected: expected_checksum,
                actual: checksum,
            })
        } else {
            Ok(CheckedData(ret))
        }
    }
}

// Tuples
macro_rules! tuple_encode {
    ($($x:ident),*) => (
        impl <S: Encoder, $($x: Encodable<S>),*> Encodable<S> for ($($x),*) {
            #[inline]
            #[allow(non_snake_case)]
            fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> {
                let &($(ref $x),*) = self;
                $( $x.consensus_encode(s)?; )*
                Ok(())
            }
        }

        impl<D: Decoder, $($x: Decodable<D>),*> Decodable<D> for ($($x),*) {
            #[inline]
            #[allow(non_snake_case)]
            fn consensus_decode(d: &mut D) -> Result<($($x),*), self::Error> {
                Ok(($({let $x = Decodable::consensus_decode(d)?; $x }),*))
            }
        }
    );
}

tuple_encode!(T0, T1);
tuple_encode!(T0, T1, T2, T3);
tuple_encode!(T0, T1, T2, T3, T4, T5);
tuple_encode!(T0, T1, T2, T3, T4, T5, T6, T7);

// References
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Box<T> {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> { (**self).consensus_encode(s) }
}

impl<D: Decoder, T: Decodable<D>> Decodable<D> for Box<T> {
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<Box<T>, self::Error> {
        Decodable::consensus_decode(d).map(Box::new)
    }
}

// HashMap
impl<S, K, V> Encodable<S> for HashMap<K, V>
    where S: Encoder,
          K: Encodable<S> + Eq + Hash,
          V: Encodable<S>
{
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), self::Error> {
        VarInt(self.len() as u64).consensus_encode(s)?;
        for (key, value) in self.iter() {
            key.consensus_encode(s)?;
            value.consensus_encode(s)?;
        }
        Ok(())
    }
}

impl<D, K, V> Decodable<D> for HashMap<K, V>
    where D: Decoder,
          K: Decodable<D> + Eq + Hash,
          V: Decodable<D>
{
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<HashMap<K, V>, self::Error> {
        let len = VarInt::consensus_decode(d)?.0;

        let mut ret = HashMap::with_capacity(len as usize);
        for _ in 0..len {
            ret.insert(Decodable::consensus_decode(d)?,
                                 Decodable::consensus_decode(d)?);
        }
        Ok(ret)
    }
}



// Tests
#[cfg(test)]
mod tests {
    use super::{CheckedData, VarInt};

    use super::{deserialize, serialize, Error};

    #[test]
    fn serialize_int_test() {
        // bool
        assert_eq!(serialize(&false), vec![0u8]);
        assert_eq!(serialize(&true), vec![1u8]);
        // u8
        assert_eq!(serialize(&1u8), vec![1u8]);
        assert_eq!(serialize(&0u8), vec![0u8]);
        assert_eq!(serialize(&255u8), vec![255u8]);
        // u16
        assert_eq!(serialize(&1u16), vec![1u8, 0]);
        assert_eq!(serialize(&256u16), vec![0u8, 1]);
        assert_eq!(serialize(&5000u16), vec![136u8, 19]);
        // u32
        assert_eq!(serialize(&1u32), vec![1u8, 0, 0, 0]);
        assert_eq!(serialize(&256u32), vec![0u8, 1, 0, 0]);
        assert_eq!(serialize(&5000u32), vec![136u8, 19, 0, 0]);
        assert_eq!(serialize(&500000u32), vec![32u8, 161, 7, 0]);
        assert_eq!(serialize(&168430090u32), vec![10u8, 10, 10, 10]);
        // TODO: test negative numbers
        assert_eq!(serialize(&1i32), vec![1u8, 0, 0, 0]);
        assert_eq!(serialize(&256i32), vec![0u8, 1, 0, 0]);
        assert_eq!(serialize(&5000i32), vec![136u8, 19, 0, 0]);
        assert_eq!(serialize(&500000i32), vec![32u8, 161, 7, 0]);
        assert_eq!(serialize(&168430090i32), vec![10u8, 10, 10, 10]);
        // u64
        assert_eq!(serialize(&1u64), vec![1u8, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&256u64), vec![0u8, 1, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&5000u64), vec![136u8, 19, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&500000u64), vec![32u8, 161, 7, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&723401728380766730u64), vec![10u8, 10, 10, 10, 10, 10, 10, 10]);
        // TODO: test negative numbers
        assert_eq!(serialize(&1i64), vec![1u8, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&256i64), vec![0u8, 1, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&5000i64), vec![136u8, 19, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&500000i64), vec![32u8, 161, 7, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&723401728380766730i64), vec![10u8, 10, 10, 10, 10, 10, 10, 10]);
    }

    #[test]
    fn serialize_varint_test() {
        assert_eq!(serialize(&VarInt(10)), vec![10u8]);
        assert_eq!(serialize(&VarInt(0xFC)), vec![0xFCu8]);
        assert_eq!(serialize(&VarInt(0xFD)), vec![0xFDu8, 0xFD, 0]);
        assert_eq!(serialize(&VarInt(0xFFF)), vec![0xFDu8, 0xFF, 0xF]);
        assert_eq!(serialize(&VarInt(0xF0F0F0F)), vec![0xFEu8, 0xF, 0xF, 0xF, 0xF]);
        assert_eq!(serialize(&VarInt(0xF0F0F0F0F0E0)), vec![0xFFu8, 0xE0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0, 0]);
    }

    #[test]
    fn deserialize_nonminimal_vec() {
        match deserialize::<Vec<u8>>(&[0xfd, 0x00, 0x00]) {
            Err(Error::ParseFailed("non-minimal varint")) => {},
            x => panic!(x)
        }
        match deserialize::<Vec<u8>>(&[0xfd, 0xfc, 0x00]) {
            Err(Error::ParseFailed("non-minimal varint")) => {},
            x => panic!(x)
        }
        match deserialize::<Vec<u8>>(&[0xfe, 0xff, 0x00, 0x00, 0x00]) {
            Err(Error::ParseFailed("non-minimal varint")) => {},
            x => panic!(x)
        }
        match deserialize::<Vec<u8>>(&[0xfe, 0xff, 0xff, 0x00, 0x00]) {
            Err(Error::ParseFailed("non-minimal varint")) => {},
            x => panic!(x)
        }
        match deserialize::<Vec<u8>>(&[0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]) {
            Err(Error::ParseFailed("non-minimal varint")) => {},
            x => panic!(x)
        }
        match deserialize::<Vec<u8>>(&[0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00]) {
            Err(Error::ParseFailed("non-minimal varint")) => {},
            x => panic!(x)
        }

        let mut vec_256 = vec![0; 259];
        vec_256[0] = 0xfd;
        vec_256[1] = 0x00;
        vec_256[2] = 0x01;
        assert!(deserialize::<Vec<u8>>(&vec_256).is_ok());

        let mut vec_253 = vec![0; 256];
        vec_253[0] = 0xfd;
        vec_253[1] = 0xfd;
        vec_253[2] = 0x00;
        assert!(deserialize::<Vec<u8>>(&vec_253).is_ok());
    }

    #[test]
    fn serialize_checkeddata_test() {
        let cd = CheckedData(vec![1u8, 2, 3, 4, 5]);
        assert_eq!(serialize(&cd), vec![5, 0, 0, 0, 162, 107, 175, 90, 1, 2, 3, 4, 5]);
    }

    #[test]
    fn serialize_vector_test() {
        assert_eq!(serialize(&vec![1u8, 2, 3]), vec![3u8, 1, 2, 3]);
        assert_eq!(serialize(&[1u8, 2, 3][..]), vec![3u8, 1, 2, 3]);
        // TODO: test vectors of more interesting objects
    }

    #[test]
    fn serialize_strbuf_test() {
        assert_eq!(serialize(&"Andrew".to_string()), vec![6u8, 0x41, 0x6e, 0x64, 0x72, 0x65, 0x77]);
    }

    #[test]
    fn serialize_box_test() {
        assert_eq!(serialize(&Box::new(1u8)), vec![1u8]);
        assert_eq!(serialize(&Box::new(1u16)), vec![1u8, 0]);
        assert_eq!(serialize(&Box::new(1u64)), vec![1u8, 0, 0, 0, 0, 0, 0, 0]);
    }

    #[test]
    fn serialize_option_test() {
        assert_eq!(serialize(&None::<u8>), vec![0]);
        assert_eq!(serialize(&Some(0xFFu8)), vec![1, 0xFF]);
    }

    #[test]
    fn deserialize_int_test() {
        // bool
        assert!((deserialize(&[58u8, 0]) as Result<bool, _>).is_err());
        assert_eq!(deserialize(&[58u8]).ok(), Some(true));
        assert_eq!(deserialize(&[1u8]).ok(), Some(true));
        assert_eq!(deserialize(&[0u8]).ok(), Some(false));
        assert!((deserialize(&[0u8, 1]) as Result<bool, _>).is_err());

        // u8
        assert_eq!(deserialize(&[58u8]).ok(), Some(58u8));

        // u16
        assert_eq!(deserialize(&[0x01u8, 0x02]).ok(), Some(0x0201u16));
        assert_eq!(deserialize(&[0xABu8, 0xCD]).ok(), Some(0xCDABu16));
        assert_eq!(deserialize(&[0xA0u8, 0x0D]).ok(), Some(0xDA0u16));
        let failure16: Result<u16, _> = deserialize(&[1u8]);
        assert!(failure16.is_err());

        // u32
        assert_eq!(deserialize(&[0xABu8, 0xCD, 0, 0]).ok(), Some(0xCDABu32));
        assert_eq!(deserialize(&[0xA0u8, 0x0D, 0xAB, 0xCD]).ok(), Some(0xCDAB0DA0u32));
        let failure32: Result<u32, _> = deserialize(&[1u8, 2, 3]);
        assert!(failure32.is_err());
        // TODO: test negative numbers
        assert_eq!(deserialize(&[0xABu8, 0xCD, 0, 0]).ok(), Some(0xCDABi32));
        assert_eq!(deserialize(&[0xA0u8, 0x0D, 0xAB, 0x2D]).ok(), Some(0x2DAB0DA0i32));
        let failurei32: Result<i32, _> = deserialize(&[1u8, 2, 3]);
        assert!(failurei32.is_err());

        // u64
        assert_eq!(deserialize(&[0xABu8, 0xCD, 0, 0, 0, 0, 0, 0]).ok(), Some(0xCDABu64));
        assert_eq!(deserialize(&[0xA0u8, 0x0D, 0xAB, 0xCD, 0x99, 0, 0, 0x99]).ok(), Some(0x99000099CDAB0DA0u64));
        let failure64: Result<u64, _> = deserialize(&[1u8, 2, 3, 4, 5, 6, 7]);
        assert!(failure64.is_err());
        // TODO: test negative numbers
        assert_eq!(deserialize(&[0xABu8, 0xCD, 0, 0, 0, 0, 0, 0]).ok(), Some(0xCDABi64));
        assert_eq!(deserialize(&[0xA0u8, 0x0D, 0xAB, 0xCD, 0x99, 0, 0, 0x99]).ok(), Some(-0x66ffff663254f260i64));
        let failurei64: Result<i64, _> = deserialize(&[1u8, 2, 3, 4, 5, 6, 7]);
        assert!(failurei64.is_err());
    }

    #[test]
    fn deserialize_vec_test() {
        assert_eq!(deserialize(&[3u8, 2, 3, 4]).ok(), Some(vec![2u8, 3, 4]));
        assert!((deserialize(&[4u8, 2, 3, 4, 5, 6]) as Result<Vec<u8>, _>).is_err());
        // found by cargo fuzz
        assert!(deserialize::<Vec<u64>>(&[0xff,0xff,0xff,0xff,0x6b,0x6b,0x6b,0x6b,0x6b,0x6b,0x6b,0x6b,0x6b,0x6b,0x6b,0x6b,0xa,0xa,0x3a]).is_err());
    }

    #[test]
    fn deserialize_strbuf_test() {
        assert_eq!(deserialize(&[6u8, 0x41, 0x6e, 0x64, 0x72, 0x65, 0x77]).ok(), Some("Andrew".to_string()));
    }

    #[test]
    fn deserialize_checkeddata_test() {
        let cd: Result<CheckedData, _> = deserialize(&[5u8, 0, 0, 0, 162, 107, 175, 90, 1, 2, 3, 4, 5]);
        assert_eq!(cd.ok(), Some(CheckedData(vec![1u8, 2, 3, 4, 5])));
    }

    #[test]
    fn deserialize_option_test() {
        let none: Result<Option<u8>, _> = deserialize(&[0u8]);
        let good: Result<Option<u8>, _> = deserialize(&[1u8, 0xFF]);
        let bad: Result<Option<u8>, _> = deserialize(&[2u8]);
        assert!(bad.is_err());
        assert_eq!(none.ok(), Some(None));
        assert_eq!(good.ok(), Some(Some(0xFF)));
    }

    #[test]
    fn deserialize_box_test() {
        let zero: Result<Box<u8>, _> = deserialize(&[0u8]);
        let one: Result<Box<u8>, _> = deserialize(&[1u8]);
        assert_eq!(zero.ok(), Some(Box::new(0)));
        assert_eq!(one.ok(), Some(Box::new(1)));
    }
}