1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
//! # biquad
//!
//! `biquad` is a library for creating second order IIR filters for signal processing based on
//! [Biquads](https://en.wikipedia.org/wiki/Digital_biquad_filter). Both a
//! Direct Form 1 (DF1) and Direct Form 2 Transposed (DF2T) implementation is
//! available, where the DF1 is better used when the filter needs retuning
//! online, as it has the property to introduce minimal artifacts under retuning,
//! while the DF2T is best used for static filters as it has the least
//! computational complexity and best numerical stability.
//!
//! # Examples
//!
//! ```
//! fn main() {
//!     use biquad::*;
//!
//!     // Cutoff and sampling frequencies
//!     let f0 = 10.hz();
//!     let fs = 1.khz();
//!
//!     // Create coefficients for the biquads
//!     let coeffs = Coefficients::<f32>::from_params(Type::LowPass, fs, f0, Q_BUTTERWORTH_F32).unwrap();
//!
//!     // Create two different biquads
//!     let mut biquad1 = DirectForm1::<f32>::new(coeffs);
//!     let mut biquad2 = DirectForm2Transposed::<f32>::new(coeffs);
//!
//!     let input_vec = vec![0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];
//!     let mut output_vec1 = Vec::new();
//!     let mut output_vec2 = Vec::new();
//!
//!     // Run for all the inputs
//!     for elem in input_vec {
//!         output_vec1.push(biquad1.run(elem));
//!         output_vec2.push(biquad2.run(elem));
//!     }
//! }
//! ```
//!
//! # Errors
//!
//! `Coefficients::from_params(...)` can error if the cutoff frequency does not adhere to the
//! [Nyquist Frequency](https://en.wikipedia.org/wiki/Nyquist_frequency), or if the Q value is
//! negative.
//!
//! `Hertz::from_hz(...)` and `Hertz::from_dt(...)` will error if the frequency is negative.
//!
//! # Panics
//!
//! `x.hz()`, `x.khz()`, `x.mhz()`, `x.dt()` will panic for `f32`/`f64` if they are negative.
//!

#![no_std]

pub mod coefficients;
pub mod frequency;

pub use crate::coefficients::*;
pub use crate::frequency::*;

/// The required functions of a biquad implementation
pub trait Biquad<T> {
    /// A single iteration of a biquad, applying the filtering on the input
    fn run(&mut self, input: T) -> T;

    /// Updating of coefficients
    fn update_coefficients(&mut self, new_coefficients: Coefficients<T>);

    /// Updating coefficients and returning the old ones. This is useful to avoid deallocating on the audio thread, since 
    /// the `Coefficients` can then be sent to another thread for deallocation.
    fn replace_coefficients(&mut self, new_coefficients: Coefficients<T>) -> Coefficients<T>;

    /// Set the internal state of the biquad to 0 without allocation.
    fn reset_state(&mut self);
}

/// Possible errors
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum Errors {
    OutsideNyquist,
    NegativeQ,
    NegativeFrequency,
}

/// Internal states and coefficients of the Direct Form 1 form
#[derive(Copy, Clone, Debug)]
pub struct DirectForm1<T> {
    y1: T,
    y2: T,
    x1: T,
    x2: T,
    coeffs: Coefficients<T>,
}

/// Internal states and coefficients of the Direct Form 2 Transposed form
#[derive(Copy, Clone, Debug)]
pub struct DirectForm2Transposed<T> {
    pub s1: T,
    pub s2: T,
    coeffs: Coefficients<T>,
}

impl DirectForm1<f32> {
    /// Creates a Direct Form 1 biquad from a set of filter coefficients
    pub fn new(coefficients: Coefficients<f32>) -> Self {
        DirectForm1 {
            y1: 0.0_f32,
            y2: 0.0_f32,
            x1: 0.0_f32,
            x2: 0.0_f32,
            coeffs: coefficients,
        }
    }
}

impl Biquad<f32> for DirectForm1<f32> {
    fn run(&mut self, input: f32) -> f32 {
        let out = self.coeffs.b0 * input + self.coeffs.b1 * self.x1 + self.coeffs.b2 * self.x2
            - self.coeffs.a1 * self.y1
            - self.coeffs.a2 * self.y2;

        self.x2 = self.x1;
        self.x1 = input;
        self.y2 = self.y1;
        self.y1 = out;

        out
    }

    fn update_coefficients(&mut self, new_coefficients: Coefficients<f32>) {
        self.coeffs = new_coefficients;
    }

    fn replace_coefficients(&mut self, new_coefficients: Coefficients<f32>) -> Coefficients<f32> {
        core::mem::replace(&mut self.coeffs, new_coefficients)
    }

    fn reset_state(&mut self) {
        self.x1 = 0.;
        self.x2 = 0.;
        self.y1 = 0.;
        self.y2 = 0.;
    }
}

impl DirectForm1<f64> {
    /// Creates a Direct Form 1 biquad from a set of filter coefficients
    pub fn new(coefficients: Coefficients<f64>) -> Self {
        DirectForm1 {
            y1: 0.0_f64,
            y2: 0.0_f64,
            x1: 0.0_f64,
            x2: 0.0_f64,
            coeffs: coefficients,
        }
    }
}

impl Biquad<f64> for DirectForm1<f64> {
    fn run(&mut self, input: f64) -> f64 {
        let out = self.coeffs.b0 * input + self.coeffs.b1 * self.x1 + self.coeffs.b2 * self.x2
            - self.coeffs.a1 * self.y1
            - self.coeffs.a2 * self.y2;

        self.x2 = self.x1;
        self.x1 = input;
        self.y2 = self.y1;
        self.y1 = out;

        out
    }

    fn update_coefficients(&mut self, new_coefficients: Coefficients<f64>) {
        self.coeffs = new_coefficients;
    }

    fn replace_coefficients(&mut self, new_coefficients: Coefficients<f64>) -> Coefficients<f64> {
        core::mem::replace(&mut self.coeffs, new_coefficients)
    }

    fn reset_state(&mut self) {
        self.x1 = 0.;
        self.x2 = 0.;
        self.y1 = 0.;
        self.y2 = 0.;
    }
}

impl DirectForm2Transposed<f32> {
    /// Creates a Direct Form 2 Transposed biquad from a set of filter coefficients
    pub fn new(coefficients: Coefficients<f32>) -> Self {
        DirectForm2Transposed {
            s1: 0.0_f32,
            s2: 0.0_f32,
            coeffs: coefficients,
        }
    }
}

impl Biquad<f32> for DirectForm2Transposed<f32> {
    fn run(&mut self, input: f32) -> f32 {
        let out = self.s1 + self.coeffs.b0 * input;
        self.s1 = self.s2 + self.coeffs.b1 * input - self.coeffs.a1 * out;
        self.s2 = self.coeffs.b2 * input - self.coeffs.a2 * out;

        out
    }

    fn update_coefficients(&mut self, new_coefficients: Coefficients<f32>) {
        self.coeffs = new_coefficients;
    }

    fn replace_coefficients(&mut self, new_coefficients: Coefficients<f32>) -> Coefficients<f32> {
        core::mem::replace(&mut self.coeffs, new_coefficients)
    }

    fn reset_state(&mut self) {
        self.s1 = 0.;
        self.s2 = 0.;
    }
}

impl DirectForm2Transposed<f64> {
    /// Creates a Direct Form 2 Transposed biquad from a set of filter coefficients
    pub fn new(coefficients: Coefficients<f64>) -> Self {
        DirectForm2Transposed {
            s1: 0.0_f64,
            s2: 0.0_f64,
            coeffs: coefficients,
        }
    }
}

impl Biquad<f64> for DirectForm2Transposed<f64> {
    fn run(&mut self, input: f64) -> f64 {
        let out = self.s1 + self.coeffs.b0 * input;
        self.s1 = self.s2 + self.coeffs.b1 * input - self.coeffs.a1 * out;
        self.s2 = self.coeffs.b2 * input - self.coeffs.a2 * out;

        out
    }

    fn update_coefficients(&mut self, new_coefficients: Coefficients<f64>) {
        self.coeffs = new_coefficients;
    }

    fn replace_coefficients(&mut self, new_coefficients: Coefficients<f64>) -> Coefficients<f64> {
        core::mem::replace(&mut self.coeffs, new_coefficients)
    }

    fn reset_state(&mut self) {
        self.s1 = 0.;
        self.s2 = 0.;
    }
}


#[cfg(test)]
#[macro_use]
extern crate std;

#[cfg(test)]
mod tests {
    use crate::*;

    #[test]
    fn test_frequency_f32() {
        let f1 = 10.hz();
        let f2 = 10.khz();
        let f3 = 10.mhz();
        let f4 = 10.dt();

        assert_eq!(f1, Hertz::<f32>::from_hz(10.).unwrap());
        assert_eq!(f2, Hertz::<f32>::from_hz(10000.).unwrap());
        assert_eq!(f3, Hertz::<f32>::from_hz(10000000.).unwrap());
        assert_eq!(f4, Hertz::<f32>::from_hz(0.1).unwrap());

        assert!(f1 < f2);
        assert!(f3 > f2);
        assert!(f1 == f1);
        assert!(f1 != f2);
    }

    #[test]
    fn test_frequency_f64() {
        let f1 = 10.hz();
        let f2 = 10.khz();
        let f3 = 10.mhz();
        let f4 = 10.dt();

        assert_eq!(f1, Hertz::<f64>::from_hz(10.).unwrap());
        assert_eq!(f2, Hertz::<f64>::from_hz(10000.).unwrap());
        assert_eq!(f3, Hertz::<f64>::from_hz(10000000.).unwrap());
        assert_eq!(f4, Hertz::<f64>::from_hz(0.1).unwrap());

        assert!(f1 < f2);
        assert!(f3 > f2);
        assert!(f1 == f1);
        assert!(f1 != f2);
    }

    #[test]
    #[should_panic]
    fn test_frequency_panic() {
        let _f1 = (-10.0).hz();
    }

    #[test]
    fn test_hertz_from_f32() {
        assert_eq!(
            Hertz::<f32>::from_dt(1.0).unwrap(),
            Hertz::<f32>::from_hz(1.0).unwrap()
        );
    }

    #[test]
    fn test_hertz_from_f64() {
        assert_eq!(
            Hertz::<f64>::from_dt(1.0).unwrap(),
            Hertz::<f64>::from_hz(1.0).unwrap()
        );
    }

    #[test]
    fn test_coefficients_normal_f32() {
        let f0 = 10.hz();
        let fs = 1.khz();

        let coeffs = Coefficients::<f32>::from_params(Type::LowPass, fs, f0, Q_BUTTERWORTH_F32);

        match coeffs {
            Ok(_) => {}
            Err(_) => {
                panic!("Coefficients creation failed!");
            }
        }
    }

    #[test]
    fn test_coefficients_normal_f64() {
        let f0 = 10.hz();
        let fs = 1.khz();

        let coeffs = Coefficients::<f64>::from_params(Type::LowPass, fs, f0, Q_BUTTERWORTH_F64);

        match coeffs {
            Ok(_) => {}
            Err(_) => {
                panic!("Coefficients creation failed!");
            }
        }
    }

    #[test]
    fn test_coefficients_fail_flipped_frequencies_f32() {
        let f0 = 10.hz();
        let fs = 1.khz();

        let coeffs = Coefficients::<f32>::from_params(Type::LowPass, f0, fs, Q_BUTTERWORTH_F32);

        match coeffs {
            Ok(_) => {
                panic!("Should not come here");
            }
            Err(e) => {
                assert_eq!(e, Errors::OutsideNyquist);
            }
        }
    }

    #[test]
    fn test_coefficients_fail_flipped_frequencies_f64() {
        let f0 = 10.hz();
        let fs = 1.khz();

        let coeffs = Coefficients::<f64>::from_params(Type::LowPass, f0, fs, Q_BUTTERWORTH_F64);

        match coeffs {
            Ok(_) => {
                panic!("Should not come here");
            }
            Err(e) => {
                assert_eq!(e, Errors::OutsideNyquist);
            }
        }
    }

    #[test]
    fn test_coefficients_fail_negative_q_f32() {
        let f0 = 10.hz();
        let fs = 1.khz();

        let coeffs = Coefficients::<f32>::from_params(Type::LowPass, fs, f0, -1.0);

        match coeffs {
            Ok(_) => {
                panic!("Should not come here");
            }
            Err(e) => {
                assert_eq!(e, Errors::NegativeQ);
            }
        }
    }

    #[test]
    fn test_coefficients_fail_negative_q_f64() {
        let f0 = 10.hz();
        let fs = 1.khz();

        let coeffs = Coefficients::<f64>::from_params(Type::LowPass, fs, f0, -1.0);

        match coeffs {
            Ok(_) => {
                panic!("Should not come here");
            }
            Err(e) => {
                assert_eq!(e, Errors::NegativeQ);
            }
        }
    }

    #[test]
    fn test_biquad_zeros_f32() {
        use std::vec::Vec;
        //use std::vec::Vec::*;

        let f0 = 10.hz();
        let fs = 1.khz();

        let coeffs =
            Coefficients::<f32>::from_params(Type::LowPass, fs, f0, Q_BUTTERWORTH_F32).unwrap();

        let mut biquad1 = DirectForm1::<f32>::new(coeffs);
        let mut biquad2 = DirectForm2Transposed::<f32>::new(coeffs);

        let input_vec = vec![0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
        let mut output_vec1 = Vec::new();
        let mut output_vec2 = Vec::new();

        for elem in input_vec {
            output_vec1.push(biquad1.run(elem));
            output_vec2.push(biquad2.run(elem));
        }
    }

    #[test]
    fn test_biquad_zeros_f64() {
        use std::vec::Vec;
        //use std::vec::Vec::*;

        let f0 = 10.hz();
        let fs = 1.khz();

        let coeffs =
            Coefficients::<f64>::from_params(Type::LowPass, fs, f0, Q_BUTTERWORTH_F64).unwrap();

        let mut biquad1 = DirectForm1::<f64>::new(coeffs);
        let mut biquad2 = DirectForm2Transposed::<f64>::new(coeffs);

        let input_vec = vec![0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
        let mut output_vec1 = Vec::new();
        let mut output_vec2 = Vec::new();

        for elem in input_vec {
            output_vec1.push(biquad1.run(elem));
            output_vec2.push(biquad2.run(elem));
        }
    }
}