1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Copyright 2014-2016 Johannes Köster, Taylor Cramer.
// Licensed under the MIT license (http://opensource.org/licenses/MIT)
// This file may not be copied, modified, or distributed
// except according to those terms.

//! The [Burrows-Wheeler-Transform](https://www.semanticscholar.org/paper/A-Block-sorting-Lossless-Data-Compression-Algorithm-Burrows-Wheeler/af56e6d4901dcd0f589bf969e604663d40f1be5d) and related data structures.
//! The implementation is based on the lecture notes
//! "Algorithmen auf Sequenzen", Kopczynski, Marschall, Martin and Rahmann, 2008 - 2015.

use std::iter::repeat;

use crate::alphabets::Alphabet;
use crate::data_structures::suffix_array::RawSuffixArraySlice;
use crate::utils::prescan;

pub type BWT = Vec<u8>;
pub type BWTSlice = [u8];
pub type Less = Vec<usize>;
pub type BWTFind = Vec<usize>;

/// Calculate Burrows-Wheeler-Transform of the given text of length n.
/// Complexity: O(n).
///
/// # Arguments
///
/// * `text` - the text ended by sentinel symbol (being lexicographically smallest)
/// * `pos` - the suffix array for the text
///
/// # Example
///
/// ```
/// use bio::data_structures::bwt::bwt;
/// use bio::data_structures::suffix_array::suffix_array;
/// let text = b"GCCTTAACATTATTACGCCTA$";
/// let pos = suffix_array(text);
/// let bwt = bwt(text, &pos);
/// assert_eq!(bwt, b"ATTATTCAGGACCC$CTTTCAA");
/// ```
pub fn bwt(text: &[u8], pos: RawSuffixArraySlice) -> BWT {
    assert_eq!(text.len(), pos.len());
    let n = text.len();
    let mut bwt: BWT = repeat(0).take(n).collect();
    for r in 0..n {
        let p = pos[r];
        bwt[r] = if p > 0 { text[p - 1] } else { text[n - 1] };
    }

    bwt
}

/// Calculate the inverse of a BWT of length n, which is the original text.
/// Complexity: O(n).
///
/// This only works if the last sentinel in the original text is unique
/// and lexicographically the smallest.
///
/// # Arguments
///
/// * `bwt` - the BWT
pub fn invert_bwt(bwt: &BWTSlice) -> Vec<u8> {
    let alphabet = Alphabet::new(bwt);
    let n = bwt.len();
    let bwtfind = bwtfind(bwt, &alphabet);
    let mut inverse = Vec::with_capacity(n);

    let mut r = bwtfind[0];
    for _ in 0..n {
        r = bwtfind[r];
        inverse.push(bwt[r]);
    }

    inverse
}

/// An occurrence array implementation.
#[derive(Default, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Serialize, Deserialize)]
pub struct Occ {
    occ: Vec<Vec<usize>>,
    k: u32,
}

impl Occ {
    /// Calculate occ array with sampling from BWT of length n.
    /// Time complexity: O(n).
    /// Space complexity: O(n / k * A) with A being the alphabet size.
    /// The specified alphabet must match the alphabet of the text and its BWT.
    /// For large texts, it is advisable to transform
    /// the text before calculating the BWT (see alphabets::rank_transform).
    ///
    /// # Arguments
    ///
    /// * `bwt` - the BWT
    /// * `k` - the sampling rate: every k-th entry will be stored
    pub fn new(bwt: &BWTSlice, k: u32, alphabet: &Alphabet) -> Self {
        let n = bwt.len();
        let m = alphabet
            .max_symbol()
            .expect("Expecting non-empty alphabet.") as usize
            + 1;
        let mut alpha = alphabet.symbols.iter().collect::<Vec<usize>>();
        // include sentinel '$'
        if (b'$' as usize) < m && !alphabet.is_word(b"$") {
            alpha.push(b'$' as usize);
        }
        let mut occ: Vec<Vec<usize>> = vec![Vec::new(); m];
        let mut curr_occ = vec![0usize; m];

        // characters not in the alphabet won't take up much space
        for &a in &alpha {
            occ[a].reserve(n / k as usize);
        }

        for (i, &c) in bwt.iter().enumerate() {
            curr_occ[c as usize] += 1;

            if i % k as usize == 0 {
                // only visit characters in the alphabet
                for &a in &alpha {
                    occ[a].push(curr_occ[a]);
                }
            }
        }

        Occ { occ, k }
    }

    /// Get occurrence count of symbol a in BWT[..r+1].
    /// Complexity: O(k).
    pub fn get(&self, bwt: &BWTSlice, r: usize, a: u8) -> usize {
        // NOTE:
        //
        // Retrieving byte match counts in this function is critical to the performance of FM Index.
        //
        // The below manual count code is roughly equivalent to:
        // ```
        // let count = bwt[(i * self.k) + 1..r + 1]
        //     .iter()
        //     .filter(|&&c| c == a)
        //     .count();
        // self.occ[a as usize][i] + count
        // ```
        //
        // But there are a couple of reasons to do this manually:
        // 1) As of 2016, versions of rustc/LLVM vectorize this manual loop more reliably
        //    than the iterator adapter version.
        // 2) Manually accumulating the byte match count in a single chunk can allows
        //    us to use a `u32` for that count, which has faster arithmetic on common arches.
        //    This does necessitate storing `k` as a u32.
        //
        // See the conversation in these issues for some of the history here:
        //
        // https://github.com/rust-bio/rust-bio/pull/74
        // https://github.com/rust-bio/rust-bio/pull/76

        // self.k is our sampling rate, so find the checkpoints either side of r.
        let lo_checkpoint = r / self.k as usize;
        // Get the occurences at the low checkpoint
        let lo_occ = self.occ[a as usize][lo_checkpoint];

        // If the sampling rate is infrequent it is worth checking if there is a closer
        // hi checkpoint.
        if self.k > 64 {
            let hi_checkpoint = lo_checkpoint + 1;
            if let Some(&hi_occ) = self.occ[a as usize].get(hi_checkpoint) {
                // Its possible that there are no occurences between the low and high
                // checkpoint in which case we bail early.
                if lo_occ == hi_occ {
                    return lo_occ;
                }

                // If r is closer to the high checkpoint, count backwards from there.
                let hi_idx = hi_checkpoint * self.k as usize;
                if (hi_idx - r) < (self.k as usize / 2) {
                    return hi_occ - bytecount::count(&bwt[r + 1..=hi_idx], a) as usize;
                }
            }
        }

        // Otherwise the default case is to count from the low checkpoint.
        let lo_idx = lo_checkpoint * self.k as usize;
        bytecount::count(&bwt[lo_idx + 1..=r], a) as usize + lo_occ
    }
}

/// Calculate the less array for a given BWT. Complexity O(n).
pub fn less(bwt: &BWTSlice, alphabet: &Alphabet) -> Less {
    let m = alphabet
        .max_symbol()
        .expect("Expecting non-empty alphabet.") as usize
        + 2;
    let mut less: Less = repeat(0).take(m).collect();
    for &c in bwt.iter() {
        less[c as usize] += 1;
    }
    // calculate +-prescan
    prescan(&mut less[..], 0, |a, b| a + b);

    less
}

/// Calculate the bwtfind array needed for inverting the BWT. Complexity O(n).
pub fn bwtfind(bwt: &BWTSlice, alphabet: &Alphabet) -> BWTFind {
    let n = bwt.len();
    let mut less = less(bwt, alphabet);

    let mut bwtfind: BWTFind = repeat(0).take(n).collect();
    for (r, &c) in bwt.iter().enumerate() {
        bwtfind[less[c as usize]] = r;
        less[c as usize] += 1;
    }

    bwtfind
}

#[cfg(test)]
mod tests {
    use super::{bwt, bwtfind, invert_bwt, Occ};
    use crate::alphabets::dna;
    use crate::alphabets::Alphabet;
    use crate::data_structures::suffix_array::suffix_array;
    use crate::data_structures::wavelet_matrix::WaveletMatrix;

    #[test]
    fn test_bwtfind() {
        let text = b"cabca$";
        let alphabet = Alphabet::new(b"abc$");
        let pos = suffix_array(text);
        let bwt = bwt(text, &pos);
        let bwtfind = bwtfind(&bwt, &alphabet);
        assert_eq!(bwtfind, vec![5, 0, 3, 4, 1, 2]);
    }

    #[test]
    fn test_invert_bwt() {
        let text = b"cabca$";
        let pos = suffix_array(text);
        let bwt = bwt(text, &pos);
        let inverse = invert_bwt(&bwt);
        assert_eq!(inverse, text);
    }

    #[test]
    fn test_occ() {
        let bwt = vec![1u8, 3u8, 3u8, 1u8, 2u8, 0u8];
        let alphabet = Alphabet::new(&[0u8, 1u8, 2u8, 3u8]);
        let occ = Occ::new(&bwt, 3, &alphabet);
        assert_eq!(occ.occ, [[0, 0], [1, 2], [0, 0], [0, 2]]);
        assert_eq!(occ.get(&bwt, 4, 2u8), 1);
        assert_eq!(occ.get(&bwt, 4, 3u8), 2);
    }

    #[test]
    fn test_occwm() {
        let text = b"GCCTTAACATTATTACGCCTA$";
        let alphabet = {
            let mut a = dna::n_alphabet();
            a.insert(b'$');
            a
        };
        let sa = suffix_array(text);
        let bwt = bwt(text, &sa);
        let occ = Occ::new(&bwt, 3, &alphabet);
        let wm = WaveletMatrix::new(&bwt);

        for c in vec![b'A', b'C', b'G', b'T', b'$'] {
            for p in 0..text.len() {
                assert_eq!(occ.get(&bwt, p, c) as u64, wm.rank(c, p as u64));
            }
        }
    }
}