1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// Copyright 2014-2016 Johannes Köster, Taylor Cramer.
// Licensed under the MIT license (http://opensource.org/licenses/MIT)
// This file may not be copied, modified, or distributed
// except according to those terms.

//! The Burrows-Wheeler-Transform and related data structures.
//! The implementation is based on the lecture notes
//! "Algorithmen auf Sequenzen", Kopczynski, Marschall, Martin and Rahmann, 2008 - 2015.

use std::iter::repeat;

use crate::alphabets::Alphabet;
use crate::data_structures::suffix_array::RawSuffixArray;
use crate::utils::prescan;
use bytecount;

pub type BWT = Vec<u8>;
pub type BWTSlice = [u8];
pub type Less = Vec<usize>;
pub type BWTFind = Vec<usize>;

/// Calculate Burrows-Wheeler-Transform of the given text of length n.
/// Complexity: O(n).
///
/// # Arguments
///
/// * `text` - the text ended by sentinel symbol (being lexicographically smallest)
/// * `pos` - the suffix array for the text
///
/// # Example
///
/// ```
/// use bio::data_structures::suffix_array::suffix_array;
/// use bio::data_structures::bwt::bwt;
/// let text = b"GCCTTAACATTATTACGCCTA$";
/// let pos = suffix_array(text);
/// let bwt = bwt(text, &pos);
/// assert_eq!(bwt, b"ATTATTCAGGACCC$CTTTCAA");
/// ```
pub fn bwt(text: &[u8], pos: &RawSuffixArray) -> BWT {
    assert_eq!(text.len(), pos.len());
    let n = text.len();
    let mut bwt: BWT = repeat(0).take(n).collect();
    for r in 0..n {
        let p = pos[r];
        bwt[r] = if p > 0 { text[p - 1] } else { text[n - 1] };
    }

    bwt
}

/// Calculate the inverse of a BWT of length n, which is the original text.
/// Complexity: O(n).
///
/// This only works if the last sentinel in the original text is unique
/// and lexicographically the smallest.
///
/// # Arguments
///
/// * `bwt` - the BWT
pub fn invert_bwt(bwt: &BWTSlice) -> Vec<u8> {
    let alphabet = Alphabet::new(bwt);
    let n = bwt.len();
    let bwtfind = bwtfind(bwt, &alphabet);
    let mut inverse = Vec::with_capacity(n);

    let mut r = bwtfind[0];
    for _ in 0..n {
        r = bwtfind[r];
        inverse.push(bwt[r]);
    }

    inverse
}

/// An occurrence array implementation.
#[derive(Serialize, Deserialize)]
pub struct Occ {
    occ: Vec<Vec<usize>>,
    k: u32,
}

impl Occ {
    /// Calculate occ array with sampling from BWT of length n.
    /// Time complexity: O(n).
    /// Space complexity: O(n / k * A) with A being the alphabet size.
    /// Alphabet size is determined on the fly from the BWT.
    /// For large texts, it is therefore advisable to transform
    /// the text before calculating the BWT (see alphabets::rank_transform).
    ///
    /// # Arguments
    ///
    /// * `bwt` - the BWT
    /// * `k` - the sampling rate: every k-th entry will be stored
    pub fn new(bwt: &BWTSlice, k: u32, alphabet: &Alphabet) -> Self {
        let n = bwt.len();
        let m = alphabet
            .max_symbol()
            .expect("Expecting non-empty alphabet.") as usize
            + 1;
        let mut occ = Vec::with_capacity(n / k as usize);
        let mut curr_occ: Vec<usize> = repeat(0).take(m).collect();
        for (i, &c) in bwt.iter().enumerate() {
            curr_occ[c as usize] += 1;
            if i % k as usize == 0 {
                occ.push(curr_occ.clone());
            }
        }

        Occ { occ, k }
    }

    /// Get occurrence count of symbol a in BWT[..r+1].
    /// Complexity: O(k).
    pub fn get(&self, bwt: &BWTSlice, r: usize, a: u8) -> usize {
        // NOTE:
        //
        // Retrieving byte match counts in this function is critical to the performance of FM Index.
        //
        // The below manual count code is roughly equivalent to:
        // ```
        // let count = bwt[(i * self.k) + 1..r + 1].iter().filter(|&&c| c == a).count();
        // self.occ[i][a as usize] + count
        // ```
        //
        // But there are a couple of reasons to do this manually:
        // 1) As of 2016, versions of rustc/LLVM vectorize this manual loop more reliably
        //    than the iterator adapter version.
        // 2) Manually accumulating the byte match count in a single chunk can allows
        //    us to use a `u32` for that count, which has faster arithmetic on common arches.
        //    This does necessitate storing `k` as a u32.
        //
        // See the conversation in these issues for some of the history here:
        //
        // https://github.com/rust-bio/rust-bio/pull/74
        // https://github.com/rust-bio/rust-bio/pull/76

        // self.k is our sampling rate, so find our last sampled checkpoint
        let i = r / self.k as usize;
        let checkpoint = self.occ[i][a as usize];

        // find the portion of the BWT past the checkpoint which we need to count
        let start = (i * self.k as usize) + 1;
        let end = r + 1;

        // count all the matching bytes b/t the closest checkpoint and our desired lookup
        let count = bytecount::count(&bwt[start..end], a);

        // return the sampled checkpoint for this character + the manual count we just did
        checkpoint + (count as usize)
    }
}

/// Calculate the less array for a given BWT. Complexity O(n).
pub fn less(bwt: &BWTSlice, alphabet: &Alphabet) -> Less {
    let m = alphabet
        .max_symbol()
        .expect("Expecting non-empty alphabet.") as usize
        + 2;
    let mut less: Less = repeat(0).take(m).collect();
    for &c in bwt.iter() {
        less[c as usize] += 1;
    }
    // calculate +-prescan
    prescan(&mut less[..], 0, |a, b| a + b);

    less
}

/// Calculate the bwtfind array needed for inverting the BWT. Complexity O(n).
pub fn bwtfind(bwt: &BWTSlice, alphabet: &Alphabet) -> BWTFind {
    let n = bwt.len();
    let mut less = less(bwt, alphabet);

    let mut bwtfind: BWTFind = repeat(0).take(n).collect();
    for (r, &c) in bwt.iter().enumerate() {
        bwtfind[less[c as usize]] = r;
        less[c as usize] += 1;
    }

    bwtfind
}

#[cfg(test)]
mod tests {
    use super::{bwt, bwtfind, invert_bwt, Occ};
    use crate::alphabets::Alphabet;
    use crate::data_structures::suffix_array::suffix_array;

    #[test]
    fn test_bwtfind() {
        let text = b"cabca$";
        let alphabet = Alphabet::new(b"abc$");
        let pos = suffix_array(text);
        let bwt = bwt(text, &pos);
        let bwtfind = bwtfind(&bwt, &alphabet);
        assert_eq!(bwtfind, vec![5, 0, 3, 4, 1, 2]);
    }

    #[test]
    fn test_invert_bwt() {
        let text = b"cabca$";
        let pos = suffix_array(text);
        let bwt = bwt(text, &pos);
        let inverse = invert_bwt(&bwt);
        assert_eq!(inverse, text);
    }

    #[test]
    fn test_occ() {
        let bwt = vec![1u8, 3u8, 3u8, 1u8, 2u8, 0u8];
        let alphabet = Alphabet::new(&[0u8, 1u8, 2u8, 3u8]);
        let occ = Occ::new(&bwt, 3, &alphabet);
        assert_eq!(occ.occ, [[0, 1, 0, 0], [0, 2, 0, 2]]);
        assert_eq!(occ.get(&bwt, 4, 2u8), 1);
        assert_eq!(occ.get(&bwt, 4, 3u8), 2);
    }
}