1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
//! A documentation-only module for the possible directives used in `#[br]` and
//! `#[binread]` attributes.
//!
//! # List of directives
//!
//! | Directive | Supports | Description
//! |-----------|----------|------------
//! | [`align_after`](#padding-and-alignment) | field | Aligns the reader to the Nth byte after reading data.
//! | [`align_before`](#padding-and-alignment) | field | Aligns the reader to the Nth byte before reading data.
//! | [`args`](#arguments) | struct field, data variant | Passes arguments to another `BinRead` object.
//! | [`args_tuple`](#arguments) | struct field, data variant | Like `args`, but specifies a tuple containing the arguments.
//! | [`assert`](#assert) | struct, field, non-unit enum, data variant | Asserts that a condition is true. Can be used multiple times.
//! | [`big`](#byte-order) | all except unit variant | Sets the byte order to big-endian.
//! | [`calc`](#calculations) | field | Computes the value of a field instead of reading data.
//! | [`count`](#count) | field | Sets the length of a vector.
//! | [`default`](#default) | field | Uses the [`default`](core::default::Default) value for a field instead of reading data.
//! | [`deref_now`](#postprocessing) | field | An alias for `postprocess_now`.
//! | [`if`](#conditional-values) | field | Reads data only if a condition is true.
//! | [`ignore`](#default) | field | An alias for `default`.
//! | [`import`](#arguments) | struct, non-unit enum, unit-like enum | Defines extra arguments for a struct or enum.
//! | [`import_tuple`](#arguments) | struct, non-unit enum, unit-like enum | Like `import`, but receives the arguments as a tuple.
//! | [`is_big`](#byte-order) | field | Conditionally sets the byte order to big-endian.
//! | [`is_little`](#byte-order) | field | Conditionally set the byte order to little-endian.
//! | [`little`](#byte-order) | all except unit variant | Sets the byte order to little-endian.
//! | [`magic`](#magic) | all | Matches a magic number.
//! | [`map`](#map) | all except unit variant | Maps a read value to a new value. When used on a struct or enum, the map function must return `Self`.
//! | [`offset`](#offset) | field | Modifies the offset used by a [`FilePtr`](crate::FilePtr).
//! | [`pad_after`](#padding-and-alignment) | field | Skips N bytes after reading a field.
//! | [`pad_before`](#padding-and-alignment) | field | Skips N bytes before reading a field.
//! | [`pad_size_to`](#padding-and-alignment) | field | Ensures the reader is at least N bytes after the starting position for this field.
//! | [`parse_with`](#custom-parsers) | field | Specifies a custom function for reading a field.
//! | [`postprocess_now`](#postprocessing) | field | Calls [`after_parse`](crate::BinRead::after_parse) immediately after reading data instead of after all fields have been read.
//! | [`pre_assert`](#pre-assert) | struct, non-unit enum, unit variant | Like `assert`, but checks the condition before parsing.
//! | [`repr`](#repr) | unit-like enum | Specifies the underlying type for a unit-like (C-style) enum.
//! | [`restore_position`](#restore-position) | field | Restores the reader’s position after reading a field.
//! | [`return_all_errors`](#enum-errors) | non-unit enum | Returns a [`Vec`] containing the error which occurred on each variant of an enum on failure. This is the default.
//! | [`return_unexpected_error`](#enum-errors) | non-unit enum | Returns a single generic error on failure.
//! | [`seek_before`](#padding-and-alignment) | field | Moves the reader to a specific position before reading data.
//! | [`temp`](#temp) | field | Uses a field as a temporary variable. Only usable with the [`derive_binread`] attribute macro.
//! | [`try`](#try) | field | Reads data into an [`Option`](core::option::Option), but stores `None` if parsing fails instead of returning an error.
//! | [`try_map`](#map) | all except unit variant | Like `map`, but returns a [`BinResult`](crate::BinResult).
//!
//! # Byte order
//!
//! The `big` and `little` directives specify the [byte order](https://en.wikipedia.org/wiki/Endianness)
//! of data in a struct, enum, variant, or field:
//!
//! ```text
//! #[br(big)]
//! #[br(little)]
//! ```
//!
//! The `is_big` and `is_little` directives conditionally set the byte order of
//! a struct field:
//!
//! ```text
//! #[br(is_little = $cond:expr)] or #[br(is_little($cond:expr))]
//! #[br(is_big = $cond:expr)] or #[br(is_big($cond:expr))]
//! ```
//!
//! The `is_big` and `is_little` directives are primarily useful when byte order
//! is defined in the data itself. Any earlier field or [import](#arguments) can
//! be referenced in the condition. Conditional byte order directives can only
//! be used on struct fields.
//!
//! The order of precedence (from highest to lowest) for determining byte order
//! within an object is:
//!
//! 1. A directive on a field
//! 2. A directive on an enum variant
//! 3. A directive on the struct or enum
//! 4. The [`endian`](crate::ReadOptions::endian) property of the
//!    [`ReadOptions`](crate::ReadOptions) object passed to
//!    [`BinRead::read_options`](crate::BinRead::read_options) by the caller
//! 5. The host machine’s native byte order
//!
//! However, if a byte order directive is added to a struct or enum, that byte
//! order will *always* be used, even if the object is embedded in another
//! object or explicitly called with a different byte order:
//!
//! ```
//! # use binread::{Endian, ReadOptions, prelude::*, io::Cursor};
//! #[derive(BinRead, Debug, PartialEq)]
//! #[br(little)] // ← this *forces* the struct to be little-endian
//! struct Child(u32);
//!
//! #[derive(BinRead, Debug)]
//! struct Parent {
//!     #[br(big)] // ← this will be ignored
//!     child: Child,
//! };
//!
//! let mut options = ReadOptions::default();
//! options.endian = Endian::Big; // ← this will be ignored
//! # assert_eq!(
//! Child::read_options(&mut Cursor::new(b"\x01\0\0\0"), &options, ())
//! # .unwrap(), Child(1));
//! ```
//!
//! When manually implementing
//! [`BinRead::read_options`](crate::BinRead::read_options) or a
//! [custom parser function](#custom-parsers), the byte order is accessible
//! from [`ReadOptions::endian`](crate::ReadOptions::endian).
//!
//! ## Examples
//!
//! ```
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead)]
//! #[br(little)]
//! struct MyType (
//!     #[br(big)] u32, // ← will be big-endian
//!     u32, // ← will be little-endian
//! );
//! ```
//!
//! ```
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead, Debug, PartialEq)]
//! #[br(big)]
//! struct MyType {
//!     val: u8,
//!     #[br(is_little = (val == 3))]
//!     other_val: u16 // ← little-endian if `val == 3`, otherwise big-endian
//! }
//!
//! # assert_eq!(MyType::read(&mut Cursor::new(b"\x03\x01\x00")).unwrap(), MyType { val: 3, other_val: 1 });
//! ```
//!
//! # Magic
//!
//! The `magic` directive matches [magic numbers](https://en.wikipedia.org/wiki/Magic_number_(programming))
//! in data:
//!
//! ```text
//! #[br(magic = $magic:literal)] or #[br(magic($magic:literal))]
//! ```
//!
//! The magic number can be a byte literal, byte string, char, float, or
//! integer. When a magic number is matched, parsing begins with the first byte
//! after the magic number in the data. When a magic number is not matched, an
//! error is returned.
//!
//! ## Examples
//!
//! ```
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead, Debug)]
//! #[br(magic = b"TEST")]
//! struct Test {
//!     val: u32
//! }
//!
//! #[derive(BinRead, Debug)]
//! #[br(magic = 1.2f32)]
//! struct Version(u16);
//!
//! #[derive(BinRead)]
//! enum Command {
//!     #[br(magic = 0u8)] Nop,
//!     #[br(magic = 1u8)] Jump { loc: u32 },
//!     #[br(magic = 2u8)] Begin { var_count: u16, local_count: u16 }
//! }
//! ```
//!
//! ## Errors
//!
//! If the specified magic number does not match the data, a
//! [`BadMagic`](crate::Error::BadMagic) error is returned and the reader’s
//! position is reset to where it was before parsing started.
//!
//! # Assert
//!
//! The `assert` directive validates objects and fields after they are read,
//! returning an error if the assertion condition evaluates to `false`:
//!
//! ```text
//! #[br(assert($cond:expr $(,)?))]
//! #[br(assert($cond:expr, $msg:literal $(,)?)]
//! #[br(assert($cond:expr, $fmt:literal, $($arg:expr),* $(,)?))]
//! #[br(assert($cond:expr, $err:expr $(,)?)]
//! ```
//!
//! Multiple assertion directives can be used; they will be combined and
//! executed in order.
//!
//! Assertions added to the top of an enum will be checked against every variant
//! in the enum.
//!
//! Any earlier field or [import](#arguments) can be referenced by expressions
//! in the directive.
//!
//! ## Examples
//!
//! ### Formatted error
//!
//! ```rust
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(Debug, PartialEq)]
//! struct NotSmallerError(u32, u32);
//!
//! #[derive(BinRead, Debug)]
//! #[br(assert(some_val > some_smaller_val, "oops! {} <= {}", some_val, some_smaller_val))]
//! struct Test {
//!     some_val: u32,
//!     some_smaller_val: u32
//! }
//!
//! let error = Cursor::new(b"\0\0\0\x01\0\0\0\xFF").read_be::<Test>();
//! assert!(error.is_err());
//! let error = error.unwrap_err();
//! let expected = "oops! 1 <= 255".to_string();
//! assert!(matches!(error, binread::Error::AssertFail { message: expected, .. }));
//! ```
//!
//! ### Custom error
//!
//! ```rust
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(Debug, PartialEq)]
//! struct NotSmallerError(u32, u32);
//!
//! #[derive(BinRead, Debug)]
//! #[br(assert(some_val > some_smaller_val, NotSmallerError(some_val, some_smaller_val)))]
//! struct Test {
//!     some_val: u32,
//!     some_smaller_val: u32
//! }
//!
//! let error = Cursor::new(b"\0\0\0\x01\0\0\0\xFF").read_be::<Test>();
//! assert!(error.is_err());
//! let error = error.unwrap_err();
//! assert_eq!(error.custom_err(), Some(&NotSmallerError(0x1, 0xFF)));
//! ```
//!
//! ## Errors
//!
//! If the assertion fails and there is no second argument, or a string literal
//! is given as the second argument, an [`AssertFail`](crate::Error::AssertFail)
//! error is returned.
//!
//! If the assertion fails and an expression is given as the second argument,
//! a [`Custom`](crate::Error::Custom) error containing the result of the
//! expression is returned.
//!
//! Arguments other than the condition are not evaluated unless the assertion
//! fails, so it is safe for them to contain expensive operations without
//! impacting performance.
//!
//! In all cases, the reader’s position is reset to where it was before parsing
//! started.
//!
//! # Pre-assert
//!
//! `pre_assert` works like [`assert`](#assert), but checks the condition before
//! data is read instead of after. This is most useful when validating arguments
//! or choosing an enum variant to parse.
//!
//! ```text
//! #[br(pre_assert($cond:expr $(,)?))]
//! #[br(pre_assert($cond:expr, $msg:literal $(,)?)]
//! #[br(pre_assert($cond:expr, $fmt:literal, $($arg:expr),* $(,)?))]
//! #[br(pre_assert($cond:expr, $err:expr $(,)?)]
//! ```
//!
//! ## Examples
//!
//! ```
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead, Debug, PartialEq)]
//! #[br(import(ty: u8))]
//! enum Command {
//!     #[br(pre_assert(ty == 0))] Variant0(u16, u16),
//!     #[br(pre_assert(ty == 1))] Variant1(u32)
//! }
//!
//! #[derive(BinRead, Debug, PartialEq)]
//! struct Message {
//!     ty: u8,
//!     len: u8,
//!     #[br(args(ty))]
//!     data: Command
//! }
//!
//! let msg = Cursor::new(b"\x01\x04\0\0\0\xFF").read_be::<Message>();
//! assert!(msg.is_ok());
//! let msg = msg.unwrap();
//! assert_eq!(msg, Message { ty: 1, len: 4, data: Command::Variant1(0xFF) });
//! ```
//!
//! # Arguments
//!
//! The `import` and `args` directives define the type of
//! [`BinRead::Args`](crate::BinRead::Args) and the values passed in the `args`
//! argument of a [`BinRead::read_options`](crate::BinRead::read_options) call,
//! respectively:
//!
//! ```text
//! #[br(import($($ident:ident : $ty:ty),* $(,)?))]
//! #[br(args($($ident:ident),* $(,)?))]
//! ```
//!
//! Any earlier field or [import](#arguments) can be referenced in `args`.
//!
//! ## Examples
//!
//! ```
//! # use binread::prelude::*;
//! #[derive(BinRead)]
//! #[br(import(val1: u32, val2: &'static str))]
//! struct ImportTest {
//!     // ...
//! }
//!
//! #[derive(BinRead)]
//! struct ArgsTets {
//!     val: u32,
//!     #[br(args(val + 3, "test"))]
//!     test: ImportTest
//! }
//! ```
//!
//! # Default
//!
//! The `default` directive, and its alias `ignore`, sets the value of the field
//! to its [`Default`](core::default::Default) instead of reading data from the
//! reader:
//!
//! ```text
//! #[br(default)] or #[br(ignore)]
//! ```
//!
//! ## Examples
//!
//! ```rust
//! # use binread::{BinRead, io::Cursor};
//! #[derive(BinRead, Debug, PartialEq)]
//! struct Test {
//!     #[br(default)]
//!     path: Option<std::path::PathBuf>,
//! }
//!
//! assert_eq!(
//!     Test::read(&mut Cursor::new(b"")).unwrap(),
//!     Test { path: None }
//! );
//! ```
//!
//! # Temp
//!
//! **This directive can only be used with [`derive_binread`]. It will not work
//! with `#[derive(BinRead)]`.**
//!
//! The `temp` directive causes a field to be treated as a temporary variable
//! instead of an actual field. The field will be removed from the struct
//! definition generated by [`derive_binread`]:
//!
//! ```text
//! #[br(temp)]
//! ```
//!
//! This allows data to be read which is necessary for parsing an object but
//! which doesn’t need to be stored in the final object. To skip data, entirely
//! use an [alignment directive](#padding-and-alignment) instead.
//!
//! ## Examples
//!
//! ```rust
//! # use binread::{BinRead, io::Cursor, derive_binread};
//! #[derive_binread]
//! #[derive(Debug, PartialEq)]
//! struct Test {
//!     // Since `Vec` stores its own length, this field is redundant
//!     #[br(temp, big)]
//!     len: u32,
//!
//!     #[br(count = len)]
//!     data: Vec<u8>
//! }
//!
//! assert_eq!(
//!     Test::read(&mut Cursor::new(b"\0\0\0\x05ABCDE")).unwrap(),
//!     Test { data: Vec::from(&b"ABCDE"[..]) }
//! );
//! ```
//!
//! # Postprocessing
//!
//! The `deref_now` directive, and its alias `postprocess_now`, cause a
//! field’s [`after_parse`](crate::BinRead::after_parse) function to be called
//! immediately after the field is parsed, instead of deferring the call until
//! the entire parent object has been parsed:
//!
//! ```text
//! #[br(deref_now)] or #[br(postprocess_now)]
//! ```
//!
//! The [`BinRead::after_parse`](crate::BinRead::after_parse) function is
//! normally used to perform additional work after the whole parent object has
//! been parsed. For example, the [`FilePtr`](crate::FilePtr) type reads an
//! object offset during parsing with
//! [`read_options`](crate::BinRead::read_options), then actually seeks to and
//! parses the pointed-to object in `after_parse`. This improves read
//! performance by reading the whole parent object sequentially before seeking
//! to read the pointed-to object.
//!
//! However, if another field in the parent object needs to access data from the
//! pointed-to object, `after_parse` needs to be called earlier. Adding
//! `deref_now` (or its alias, `postprocess_now`) to the earlier field causes
//! this to happen.
//!
//! ## Examples
//!
//! ```
//! # use binread::{prelude::*, FilePtr32, NullString, io::Cursor};
//! #[derive(BinRead, Debug)]
//! #[br(big, magic = b"TEST")]
//! struct TestFile {
//!     #[br(deref_now)]
//!     ptr: FilePtr32<NullString>,
//!
//!     value: i32,
//!
//!     // Notice how `ptr` can be used as it has already been postprocessed
//!     #[br(calc = ptr.len())]
//!     ptr_len: usize,
//! }
//!
//! # let test_contents = b"\x54\x45\x53\x54\x00\x00\x00\x10\xFF\xFF\xFF\xFF\x00\x00\x00\x00\x54\x65\x73\x74\x20\x73\x74\x72\x69\x6E\x67\x00\x00\x00\x00\x69";
//! # let test = Cursor::new(test_contents).read_be::<TestFile>().unwrap();
//! # assert_eq!(test.ptr_len, 11);
//! # assert_eq!(test.value, -1);
//! # assert_eq!(test.ptr.to_string(), "Test string");
//! ```
//!
//! # Restore position
//!
//! The `restore_position` directive restores the position of the reader after
//! a field is read:
//!
//! ```text
//! #[br(restore_position)]
//! ```
//!
//! To seek to an arbitrary position, use [`seek_before`](#padding-and-alignment)
//! instead.
//!
//! ## Examples
//!
//! ```
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead, Debug, PartialEq)]
//! struct MyType {
//!     #[br(restore_position)]
//!     test: u32,
//!     test_bytes: [u8; 4]
//! }
//!
//! # assert_eq!(
//! #   Cursor::new(b"\0\0\0\x01").read_be::<MyType>().unwrap(),
//! #   MyType { test: 1, test_bytes: [0,0,0,1]}
//! # );
//! ```
//!
//! ## Errors
//!
//! If querying or restoring the reader position fails, an
//! [`Io`](crate::Error::Io) error is returned and the reader’s
//! position is reset to where it was before parsing started.
//!
//! # Try
//!
//! The `try` directive allows parsing of an [`Option`] field to fail instead
//! of returning an error:
//!
//! ```text
//! #[br(try)]
//! ```
//!
//! If the field cannot be parsed, the position of the reader will be restored
//! and the value of the field will be set to [`None`].
//!
//! ## Examples
//!
//! ```
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead)]
//! struct MyType {
//!     #[br(try)]
//!     maybe_u32: Option<u32>
//! }
//!
//! assert_eq!(Cursor::new(b"").read_be::<MyType>().unwrap().maybe_u32, None);
//! ```
//!
//! # Map
//!
//! The `map` and `try_map` directives allow data to be read using one type and
//! stored as another:
//!
//! ```text
//! #[br(map = $map_fn:expr)] or #[map($map_fn:expr))]
//! #[br(try_map = $map_fn:expr)] or #[try_map($map_fn:expr))]
//! ```
//!
//! When using `map` on a field, the map function must explicitly declare the
//! type of the data to be read in its first parameter and return a value which
//! matches the type of the field. The map function can be a plain function,
//! closure, or call expression which returns a plain function or closure.
//!
//! When using `try_map` on a field, the same rules apply, except that the
//! function must return a [`Result`] instead.
//!
//! When using `map` or `try_map` on a struct or enum, the map function must
//! return `Self` or `Result<Self, E>`.
//!
//! Any earlier field or [import](#arguments) can be referenced by the
//! expression in the directive.
//!
//! ## Examples
//!
//! ### Using `map` on a field
//!
//! ```
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead)]
//! struct MyType {
//!     #[br(map = |x: u8| x.to_string())]
//!     int_str: String
//! }
//!
//! # assert_eq!(Cursor::new(b"\0").read_be::<MyType>().unwrap().int_str, "0");
//! ```
//!
//! ### Using `try_map` on a field
//!
//! ```
//! # use binread::{prelude::*, io::Cursor};
//! # use std::convert::TryInto;
//! #[derive(BinRead)]
//! struct MyType {
//!     #[br(try_map = |x: i8| x.try_into())]
//!     value: u8
//! }
//!
//! # assert_eq!(Cursor::new(b"\0").read_be::<MyType>().unwrap().value, 0);
//! # assert!(Cursor::new(b"\xff").read_be::<MyType>().is_err());
//! ```
//!
//! ### Using `map` on a struct to create a bit field
//!
//! The [`modular-bitfield`](https://docs.rs/modular-bitfield) crate can be used
//! along with `map` to create a struct out of raw bits.
//!
//! ```
//! # use binread::{prelude::*, io::Cursor};
//! use modular_bitfield::prelude::*;
//!
//! // This reads a single byte from the reader
//! #[bitfield]
//! #[derive(BinRead)]
//! #[br(map = Self::from_bytes)]
//! pub struct PackedData {
//!     status: B4,
//!     is_fast: bool,
//!     is_static: bool,
//!     is_alive: bool,
//!     is_good: bool,
//! }
//!
//! // example byte: 0x53
//! // [good] [alive] [static] [fast] [status]
//! //      0       1        0      1     0011
//! //  false    true    false   true        3
//!
//! # let data = Cursor::new(b"\x53").read_le::<PackedData>().unwrap();
//! # assert_eq!(data.is_good(), false);
//! # assert_eq!(data.is_alive(), true);
//! # assert_eq!(data.is_static(), false);
//! # assert_eq!(data.is_fast(), true);
//! # assert_eq!(data.status(), 3);
//! ```
//!
//! ## Errors
//!
//! If the `try_map` function returns a [`binread::io::Error`](crate::io::Error)
//! or [`std::io::Error`], an [`Io`](crate::Error::Io) error is returned. For
//! any other error type, a [`Custom`](crate::Error::Custom) error is returned.
//!
//! In all cases, the reader’s position is reset to where it was before parsing
//! started.
//!
//! # Custom parsers
//!
//! The `parse_with` directive specifies a custom parsing function which can be
//! used to override the default [`BinRead`](crate::BinRead) implementation for
//! a type, or to parse types which have no `BinRead` implementation at all:
//!
//! ```text
//! #[br(parse_with = $parse_fn:expr)] or #[br(parse_with($parse_fn:expr))]
//! ```
//!
//! Any earlier field or [import](#arguments) can be referenced by the
//! expression in the directive (for example, to construct a parser function at
//! runtime by calling a function generator).
//!
//! ## Examples
//!
//! ### Using a custom parser to generate a [`HashMap`](std::collections::HashMap)
//!
//! ```
//! # use binread::{prelude::*, io::*, ReadOptions};
//! # use std::collections::HashMap;
//! fn custom_parser<R: Read + Seek>(reader: &mut R, ro: &ReadOptions, _: ())
//!     -> BinResult<HashMap<u16, u16>>
//! {
//!     let mut map = HashMap::new();
//!     map.insert(
//!         reader.read_be().unwrap(),
//!         reader.read_be().unwrap()
//!     );
//!     Ok(map)
//! }
//!
//! #[derive(BinRead)]
//! struct MyType {
//!     #[br(parse_with = custom_parser)]
//!     offsets: HashMap<u16, u16>
//! }
//!
//! # assert_eq!(Cursor::new(b"\0\0\0\x01").read_be::<MyType>().unwrap().offsets.get(&0), Some(&1));
//! ```
//!
//! ### Using `FilePtr::parse` to read a `NullString` without storing a `FilePtr`
//!
//! ```
//! # use binread::{prelude::*, io::Cursor, FilePtr32, NullString};
//! #[derive(BinRead)]
//! struct MyType {
//!     #[br(parse_with = FilePtr32::parse)]
//!     some_string: NullString,
//! }
//!
//! # let val: MyType = Cursor::new(b"\0\0\0\x04Test\0").read_be().unwrap();
//! # assert_eq!(val.some_string.to_string(), "Test");
//! ```
//!
//! # Calculations
//!
//! The `calc` directive computes the value of a field instead of reading data
//! from the reader:
//!
//! ```text
//! #[br(calc = $value:expr)] or #[br(calc($value:expr))]
//! ```
//!
//! Any earlier field or [import](#arguments) can be referenced by the
//! expression in the directive.
//!
//! ## Examples
//!
//! ```rust
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead)]
//! struct MyType {
//!     var: u32,
//!     #[br(calc = 3 + var)]
//!     var_plus_3: u32,
//! }
//!
//! # assert_eq!(Cursor::new(b"\0\0\0\x01").read_be::<MyType>().unwrap().var_plus_3, 4);
//! ```
//!
//! # Count
//!
//! The `count` directive sets the number of values to read into a repeating
//! collection type like a [`Vec`]:
//!
//! ```text
//! #[br(count = $count:expr) or #[br(count($count:expr))]
//! ```
//!
//! When manually implementing
//! [`BinRead::read_options`](crate::BinRead::read_options) or a
//! [custom parser function](#custom-parsers), the `count` value is accessible
//! from [`ReadOptions::count`](crate::ReadOptions::count).
//!
//! Any earlier field or [import](#arguments) can be referenced by the
//! expression in the directive.
//!
//! ## Examples
//!
//! ### Using `count` with [`Vec`]
//!
//! ```
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead)]
//! struct MyType {
//!     size: u32,
//!     #[br(count = size)]
//!     data: Vec<u8>,
//! }
//!
//! # assert_eq!(
//! #    Cursor::new(b"\0\0\0\x04\x01\x02\x03\x04").read_be::<MyType>().unwrap().data,
//! #    &[1u8, 2, 3, 4]
//! # );
//! ```
//!
//! ### Using `count` with [`FilePtr`](crate::FilePtr) and `Vec`
//!
//! ```
//! # use binread::{prelude::*, io::Cursor, FilePtr};
//! #[derive(BinRead)]
//! struct MyType {
//!     size: u32,
//!     #[br(count = size)]
//!     data: FilePtr<u32, Vec<u8>>,
//! }
//!
//! # assert_eq!(
//! #    *(Cursor::new(b"\0\0\0\x04\0\0\0\x09\0\x01\x02\x03\x04").read_be::<MyType>().unwrap().data),
//! #    &[1u8, 2, 3, 4]
//! # );
//! ```
//!
//! # Offset
//!
//! The `offset` and `offset_after` directives specify an additional relative
//! offset to a value accessed by a `BinRead` implementation which reads data
//! from an offset, like [`FilePtr`](crate::FilePtr):
//!
//! ```text
//! #[br(offset = $offset:expr)] or #[br(offset($offset:expr))]
//! #[br(offset_after = $offset:expr)] or #[br(offset_after($offset:expr))]
//! ```
//!
//! When manually implementing
//! [`BinRead::read_options`](crate::BinRead::read_options) or a
//! [custom parser function](#custom-parsers), the offset is accessible
//! from [`ReadOptions::offset`](crate::ReadOptions::offset).
//!
//! For `offset`, any earlier field or [import](#arguments) can be referenced by
//! the expression in the directive.
//!
//! For `offset_after`, *all* fields and imports can be referenced by the
//! expression in the directive, but [`deref_now`](#postprocessing) cannot be
//! used.
//!
//! ## Examples
//!
//! ```rust
//! # use binread::{prelude::*, io::Cursor, FilePtr};
//! #[derive(BinRead, Debug, PartialEq)]
//! struct OffsetTest {
//!     #[br(little, offset = 4)]
//!     test: FilePtr<u8, u16>
//! }
//!
//! # assert_eq!(
//! #   *OffsetTest::read(&mut Cursor::new(b"\0\xFF\xFF\xFF\x02\0")).unwrap().test,
//! #   2u16
//! # );
//! ```
//!
//! ## Errors
//!
//! If seeking to or reading from the offset fails, an [`Io`](crate::Error::Io)
//! error is returned and the reader’s position is reset to where it was before
//! parsing started.
//!
//! # Conditional values
//!
//! The `if` directive allows conditional parsing of a field, reading from data
//! if the condition is true and using a computed value if the condition is
//! false:
//!
//! ```text
//! #[br(if = $cond:expr)] or #[br(if($cond:expr))]
//! #[br(if = $cond:expr, $alternate:expr)] or #[br(if($cond:expr, $alternate:expr))]
//! ```
//!
//! If an alternate is provided, that value will be used when the condition is
//! false; otherwise, the [`default`](core::default::Default) value for the type
//! will be used.
//!
//! The alternate expression is not evaluated unless the condition is false, so
//! it is safe for it to contain expensive operations without impacting
//! performance.
//!
//! Any earlier field or [import](#arguments) can be referenced by the
//! expression in the directive.
//!
//! ## Examples
//!
//! ### Using an [`Option`] field with no alternate
//!
//! ```rust
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead)]
//! struct MyType {
//!     var: u32,
//!
//!     #[br(if(var == 1))]
//!     original_byte: Option<u8>,
//!
//!     #[br(if(var != 1))]
//!     other_byte: Option<u8>,
//! }
//!
//! # assert_eq!(Cursor::new(b"\0\0\0\x01\x03").read_be::<MyType>().unwrap().original_byte, Some(3));
//! # assert_eq!(Cursor::new(b"\0\0\0\x01\x03").read_be::<MyType>().unwrap().other_byte, None);
//! ```
//!
//! ### Using a scalar field with an explicit alternate
//!
//! ```rust
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead)]
//! struct MyType {
//!     var: u32,
//!
//!     #[br(if(var == 1, 0))]
//!     original_byte: u8,
//!
//!     #[br(if(var != 1, 42))]
//!     other_byte: u8,
//! }
//!
//! # assert_eq!(Cursor::new(b"\0\0\0\x01\x03").read_be::<MyType>().unwrap().original_byte, 3);
//! # assert_eq!(Cursor::new(b"\0\0\0\x01\x03").read_be::<MyType>().unwrap().other_byte, 42);
//! ```
//!
//! # Padding and alignment
//!
//! BinRead offers different directives for common forms of
//! [data structure alignment](https://en.wikipedia.org/wiki/Data_structure_alignment#Data_structure_padding).
//!
//! The `pad_before` and `pad_after` directives skip a specific number of bytes
//! either before or after reading a field, respectively:
//!
//! ```text
//! #[br(pad_after = $skip_bytes:expr)] or #[br(pad_after($skip_bytes:expr))]
//! #[br(pad_before = $skip_bytes:expr)] or #[br(pad_before($skip_bytes:expr))]
//! ```
//!
//! The `align_before` and `align_after` directives align the next read to the
//! given byte alignment either before or after reading a field, respectively:
//!
//! ```text
//! #[br(align_after = $align_to:expr)] or #[br(align_after($align_to:expr))]
//! #[br(align_before = $align_to:expr)] or #[br(align_before($align_to:expr))]
//! ```
//!
//! The `seek_before` directive accepts a [`SeekFrom`](crate::io::SeekFrom)
//! object and seeks the reader to an arbitrary position before reading a field:
//!
//! ```text
//! #[br(seek_before = $seek_from:expr)] or #[br(seek_before($seek_from:expr))]
//! ```
//!
//! The position of the reader will not be restored after the seek; use the
//! [`restore_position`](#restore-position) directive for this.
//!
//! The `pad_size_to` directive will ensure that the reader has advanced at
//! least the number of bytes given after the field has been read:
//!
//! ```text
//! #[br(pad_size_to = $size:expr)] or #[br(pad_size_to($size:expr))]
//! ```
//!
//! For example, if a format uses a null-terminated string, but always reserves
//! at least 256 bytes for that string, [`NullString`](crate::NullString) will
//! read the string and `pad_size_to(256)` will ensure the reader skips whatever
//! padding, if any, remains. If the string is longer than 256 bytes, no padding
//! will be skipped.
//!
//! Any earlier field or [import](#arguments) can be referenced by the
//! expressions in any of these directives.
//!
//! ## Examples
//!
//! ```rust
//! # use binread::{BinRead, NullString, io::SeekFrom};
//! #[derive(BinRead)]
//! struct MyType {
//!     #[br(align_before = 4, pad_after = 1, align_after = 4)]
//!     str: NullString,
//!
//!     #[br(pad_size_to = 0x10)]
//!     test: u64,
//!
//!     #[br(seek_before = SeekFrom::End(-4))]
//!     end: u32,
//! }
//! ```
//!
//! ## Errors
//!
//! If seeking fails, an [`Io`](crate::Error::Io) error is returned and the
//! reader’s position is reset to where it was before parsing started.
//!
//! # Repr
//!
//! The `repr` directive is used on a unit-like (C-style) enum to specify the
//! underlying type to use when reading the field and matching variants:
//!
//! ```text
//! #[br(repr = $ty:ty)] or #[br(repr($ty:ty))]
//! ```
//!
//! ## Examples
//!
//! ```
//! # use binread::BinRead;
//! #[derive(BinRead)]
//! #[br(big, repr = i16)]
//! enum FileKind {
//!     Unknown = -1,
//!     Text,
//!     Archive,
//!     Document,
//!     Picture,
//! }
//! ```
//!
//! ## Errors
//!
//! If a read fails, an [`Io`](crate::Error::Io) error is returned. If no
//! variant matches, a [`NoVariantMatch`](crate::Error::NoVariantMatch) error
//! is returned.
//!
//! In all cases, the reader’s position is reset to where it was before parsing
//! started.

#![allow(unused_imports)]

use crate::derive_binread;