1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
use std::vec;

use super::*;
use crate::consts::MAX_ABSOLUTE_DIFFERENCE;
use crate::utils::{Cap, Join, SubpathTValue, TValue};

use glam::{DAffine2, DVec2};

/// Helper function to ensure the index and t value pair is mapped within a maximum index value.
/// Allows for the point to be fetched without needing to handle an additional edge case.
/// - Ex. Via `subpath.iter().nth(index).evaluate(t);`
fn map_index_within_range(index: usize, t: f64, max_size: usize) -> (usize, f64) {
	if max_size > 0 && index == max_size && t == 0. {
		(index - 1, 1.)
	} else {
		(index, t)
	}
}

/// Functionality that transforms Subpaths, such as split, reduce, offset, etc.
impl<ManipulatorGroupId: crate::Identifier> Subpath<ManipulatorGroupId> {
	/// Returns either one or two Subpaths that result from splitting the original Subpath at the point corresponding to `t`.
	/// If the original Subpath was closed, a single open Subpath will be returned.
	/// If the original Subpath was open, two open Subpaths will be returned.
	/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/split/solo" title="Split Demo"></iframe>
	pub fn split(&self, t: SubpathTValue) -> (Subpath<ManipulatorGroupId>, Option<Subpath<ManipulatorGroupId>>) {
		let (segment_index, t) = self.t_value_to_parametric(t);
		let curve = self.get_segment(segment_index).unwrap();

		let [first_bezier, second_bezier] = curve.split(TValue::Parametric(t));

		let mut clone = self.manipulator_groups.clone();
		// Split the manipulator group list such that the split location is between the last and first elements of the two split halves
		// If the split is on an anchor point, include this anchor point in the first half of the split, except for the first manipulator group which we want in the second group
		let (mut first_split, mut second_split) = if !(t == 0. && segment_index == 0) {
			let clone2 = clone.split_off(self.len().min(segment_index + 1 + (t == 1.) as usize));
			(clone, clone2)
		} else {
			(vec![], clone)
		};

		// If the subpath is closed and the split point is the start or end of the Subpath
		if self.closed && ((t == 0. && segment_index == 0) || (t == 1. && segment_index == self.len_segments() - 1)) {
			// The entire vector of manipulator groups will be in the second_split
			// Add a new manipulator group with the same anchor as the first node to represent the end of the now opened subpath
			let last_curve = self.iter().last().unwrap();
			first_split.push(ManipulatorGroup {
				anchor: first_bezier.end(),
				in_handle: last_curve.handle_end(),
				out_handle: None,
				id: ManipulatorGroupId::new(),
			});
		} else {
			if !first_split.is_empty() {
				let num_elements = first_split.len();
				first_split[num_elements - 1].out_handle = first_bezier.handle_start();
			}

			if !second_split.is_empty() {
				second_split[0].in_handle = second_bezier.handle_end();
			}

			// Push new manipulator groups to represent the location of the split at the end of the first group and at the start of the second
			// If the split was at a manipulator group's anchor, add only one manipulator group
			// Add it to the first list when the split location is on the first manipulator group, otherwise add to the second list
			if (t % 1. != 0.) || segment_index == 0 {
				first_split.push(ManipulatorGroup {
					anchor: first_bezier.end(),
					in_handle: first_bezier.handle_end(),
					out_handle: None,
					id: ManipulatorGroupId::new(),
				});
			}

			if !(t == 0. && segment_index == 0) {
				second_split.insert(
					0,
					ManipulatorGroup {
						anchor: second_bezier.start(),
						in_handle: None,
						out_handle: second_bezier.handle_start(),
						id: ManipulatorGroupId::new(),
					},
				);
			}
		}

		if self.closed {
			// "Rotate" the manipulator groups list so that the split point becomes the start and end of the open subpath
			second_split.append(&mut first_split);
			(Subpath::new(second_split, false), None)
		} else {
			(Subpath::new(first_split, false), Some(Subpath::new(second_split, false)))
		}
	}

	/// Returns [ManipulatorGroup]s with a reversed winding order.
	fn reverse_manipulator_groups(manipulator_groups: &[ManipulatorGroup<ManipulatorGroupId>]) -> Vec<ManipulatorGroup<ManipulatorGroupId>> {
		manipulator_groups
			.iter()
			.rev()
			.map(|group| ManipulatorGroup {
				anchor: group.anchor,
				in_handle: group.out_handle,
				out_handle: group.in_handle,
				id: ManipulatorGroupId::new(),
			})
			.collect::<Vec<ManipulatorGroup<ManipulatorGroupId>>>()
	}

	/// Returns a [Subpath] with a reversed winding order.
	/// Note that a reversed closed subpath will start on the same manipulator group and simply wind the other direction
	pub fn reverse(&self) -> Subpath<ManipulatorGroupId> {
		let mut reversed = Subpath::reverse_manipulator_groups(self.manipulator_groups());
		if self.closed {
			reversed.rotate_right(1);
		};
		Subpath {
			manipulator_groups: reversed,
			closed: self.closed,
		}
	}

	/// Returns an open [Subpath] that results from trimming the original Subpath between the points corresponding to `t1` and `t2`, maintaining the winding order of the original.
	/// If the original Subpath is closed, the order of arguments does matter.
	/// The resulting Subpath will wind from the given `t1` to `t2`.
	/// That means, if the value of `t1` > `t2`, it will cross the break between endpoints from `t1` to `t = 1 = 0` to `t2`.
	/// If a path winding in the reverse direction is desired, call `trim` on the `Subpath` returned from `Subpath::reverse`.
	/// <iframe frameBorder="0" width="100%" height="400px" src="https://graphite.rs/libraries/bezier-rs#subpath/trim/solo" title="Trim Demo"></iframe>
	pub fn trim(&self, t1: SubpathTValue, t2: SubpathTValue) -> Subpath<ManipulatorGroupId> {
		// Return a clone of the Subpath if it is not long enough to be a valid Bezier
		if self.manipulator_groups.is_empty() {
			return Subpath {
				manipulator_groups: vec![],
				closed: self.closed,
			};
		}

		let (mut t1_curve_index, mut t1_curve_t) = self.t_value_to_parametric(t1);
		let (mut t2_curve_index, mut t2_curve_t) = self.t_value_to_parametric(t2);

		// The only case where t would be 1 is when the input parameter refers to the the very last point on the subpath.
		// We want these index and t pairs to always represent that point as the next curve index with t == 0.
		if t1_curve_t == 1. {
			t1_curve_index += 1;
			t1_curve_t = 0.;
		}
		if t2_curve_t == 1. {
			t2_curve_index += 1;
			t2_curve_t = 0.;
		}

		// Check if the trimmed result is in the reverse direction
		let are_arguments_reversed = t1_curve_index > t2_curve_index || (t1_curve_index == t2_curve_index && t1_curve_t > t2_curve_t);
		if !self.closed && are_arguments_reversed {
			(t1_curve_index, t2_curve_index) = (t2_curve_index, t1_curve_index);
			(t1_curve_t, t2_curve_t) = (t2_curve_t, t1_curve_t);
		}

		// Get a new list from the manipulator groups that will be trimmed at the ends to form the resulting subpath.
		// The list will contain enough manipulator groups such that the later code simply needs to trim the first and last bezier segments
		// and then update the values of the corresponding first and last manipulator groups accordingly.
		let mut cloned_manipulator_groups = self.manipulator_groups.clone();
		let mut new_manipulator_groups = if self.closed && are_arguments_reversed {
			// Need to rotate the cloned manipulator groups vector
			// Remove the elements starting from t1_curve_index to become the new beginning of the list
			let mut front = cloned_manipulator_groups.split_off(t1_curve_index);
			// Truncate middle elements that are not needed
			cloned_manipulator_groups.truncate(t2_curve_index + ((t2_curve_t != 0.) as usize) + 1);
			// Reconnect the two ends in the new order
			front.extend(cloned_manipulator_groups);
			if t1_curve_index == t2_curve_index % self.len_segments() {
				// If the start and end of the trim are in the same bezier segment, we want to add a duplicate of the first two manipulator groups.
				// This is to make sure the the closed loop is correctly represented and because this segment needs to be trimmed on both ends of the resulting subpath.
				front.push(front[0].clone());
				front.push(front[1].clone());
			}
			if t1_curve_index == t2_curve_index % self.len_segments() + 1 {
				// If the start and end of the trim are in adjacent bezier segments, we want to add a duplicate of the first manipulator group.
				// This is to make sure the the closed loop is correctly represented.
				front.push(front[0].clone());
			}
			front
		} else {
			// Determine the subsection of the subpath's manipulator groups that are needed
			if self.closed {
				// Add a duplicate of the first manipulator group to ensure the final closing segment is considered
				cloned_manipulator_groups.push(cloned_manipulator_groups[0].clone());
			}

			// Find the start and end of the new range and consider whether the indices are reversed
			let range_start = t1_curve_index.min(t2_curve_index);
			// Add 1 since the drain range is not inclusive
			// Add 1 again if the corresponding t is not 0 because we want to include the next manipulator group which forms the bezier that this t value is on
			let range_end = 1 + t2_curve_index + ((t2_curve_t != 0.) as usize);

			cloned_manipulator_groups
				.drain(range_start..range_end.min(cloned_manipulator_groups.len()))
				.collect::<Vec<ManipulatorGroup<ManipulatorGroupId>>>()
		};

		// Adjust curve indices to match the cloned list
		if self.closed && are_arguments_reversed {
			// If trimmed subpath required rotating the manipulator group, adjust the indices to match
			t2_curve_index = (t2_curve_index + self.len_segments() - t1_curve_index) % self.len_segments();
			if t2_curve_index == 0 {
				// If the case is where the start and end are in the same bezier,
				// change the index to point to the duplicate of this bezier that was pushed to the vector
				t2_curve_index += self.len_segments();
			}
			t1_curve_index = 0;
		} else {
			let min_index = t1_curve_index.min(t2_curve_index);
			t1_curve_index -= min_index;
			t2_curve_index -= min_index;
		}

		// Change the representation of the point corresponding to the end point of the subpath
		// So that we do not need an additional edges case in the later code to handle this point
		(t1_curve_index, t1_curve_t) = map_index_within_range(t1_curve_index, t1_curve_t, new_manipulator_groups.len() - 1);
		(t2_curve_index, t2_curve_t) = map_index_within_range(t2_curve_index, t2_curve_t, new_manipulator_groups.len() - 1);

		if new_manipulator_groups.len() == 1 {
			// This case will occur when `t1` and `t2` both represent one of the manipulator group anchors
			// Add a duplicate manipulator group so that the returned Subpath is still a valid Bezier
			let mut point = new_manipulator_groups[0].clone();
			point.in_handle = None;
			point.out_handle = None;
			return Subpath {
				manipulator_groups: vec![point],
				closed: false,
			};
		}

		let len_new_manip_groups = new_manipulator_groups.len();

		// Create Beziers from the first and last pairs of manipulator groups
		// These will be trimmed to form the start and end of the new subpath
		let curve1 = new_manipulator_groups[0].to_bezier(&new_manipulator_groups[1]);
		let curve2 = new_manipulator_groups[len_new_manip_groups - 2].to_bezier(&new_manipulator_groups[len_new_manip_groups - 1]);

		// If the target curve_indices are the same, then the trim must be happening within one bezier
		// This means curve1 == curve2 must be true, and we can simply call the Bezier trim.
		if t1_curve_index == t2_curve_index {
			return Subpath::from_bezier(&curve1.trim(TValue::Parametric(t1_curve_t), TValue::Parametric(t2_curve_t)));
		}

		// Split the bezier's with the according t value and keep the correct half
		let [_, front_split] = curve1.split(TValue::Parametric(t1_curve_t));
		let [back_split, _] = curve2.split(TValue::Parametric(t2_curve_t));

		// Update the first two manipulator groups to match the front_split
		new_manipulator_groups[1].in_handle = front_split.handle_end();
		new_manipulator_groups[0] = ManipulatorGroup {
			anchor: front_split.start(),
			in_handle: None,
			out_handle: front_split.handle_start(),
			id: ManipulatorGroupId::new(),
		};

		// Update the last two manipulator groups to match the back_split
		new_manipulator_groups[len_new_manip_groups - 2].out_handle = back_split.handle_start();
		new_manipulator_groups[len_new_manip_groups - 1] = ManipulatorGroup {
			anchor: back_split.end(),
			in_handle: back_split.handle_end(),
			out_handle: None,
			id: ManipulatorGroupId::new(),
		};

		Subpath {
			manipulator_groups: new_manipulator_groups,
			closed: false,
		}
	}

	/// Apply a transformation to all of the [ManipulatorGroup]s in the [Subpath].
	pub fn apply_transform(&mut self, affine_transform: DAffine2) {
		for manipulator_group in &mut self.manipulator_groups {
			manipulator_group.apply_transform(affine_transform);
		}
	}

	/// Smooths a Subpath up to the first derivative, using a weighted averaged based on segment length.
	/// The Subpath must be open, and contain no quadratic segments.
	pub(crate) fn smooth_open_subpath(&mut self) {
		if self.len() < 2 {
			return;
		}
		for i in 1..self.len() - 1 {
			let first_bezier = self.manipulator_groups[i - 1].to_bezier(&self.manipulator_groups[i]);
			let second_bezier = self.manipulator_groups[i].to_bezier(&self.manipulator_groups[i + 1]);
			if first_bezier.handle_end().is_none() || second_bezier.handle_end().is_none() {
				continue;
			}
			let end_tangent = first_bezier.non_normalized_tangent(1.);
			let start_tangent = second_bezier.non_normalized_tangent(0.);

			// Compute an average unit vector, weighing the segments by a rough estimation of their relative size.
			let segment1_len = first_bezier.length(Some(5));
			let segment2_len = second_bezier.length(Some(5));
			let average_unit_tangent = (end_tangent.normalize() * segment1_len + start_tangent.normalize() * segment2_len) / (segment1_len + segment2_len);

			// Adjust start and end handles to fit the average tangent
			let end_point = first_bezier.end();
			self.manipulator_groups[i].in_handle = Some((average_unit_tangent / 3. * -1.) * end_tangent.length() + end_point);

			let start_point = second_bezier.start();
			self.manipulator_groups[i].out_handle = Some((average_unit_tangent / 3.) * start_tangent.length() + start_point);
		}
	}

	// TODO: If a segment curls back on itself tightly enough it could intersect again at the portion that should be trimmed. This could cause the Subpaths to be clipped
	// at the incorrect location. This can be avoided by first trimming the two Subpaths at any extrema, effectively ignoring loopbacks.
	/// Helper function to clip overlap of two intersecting open Subpaths. Returns an optional, as intersections may not exist for certain arrangements and distances.
	/// Assumes that the Subpaths represents simple Bezier segments, and clips the Subpaths at the last intersection of the first Subpath, and first intersection of the last Subpath.
	fn clip_simple_subpaths(subpath1: &Subpath<ManipulatorGroupId>, subpath2: &Subpath<ManipulatorGroupId>) -> Option<(Subpath<ManipulatorGroupId>, Subpath<ManipulatorGroupId>)> {
		// Split the first subpath at its last intersection
		let intersections1 = subpath1.subpath_intersections(subpath2, None, None);
		if intersections1.is_empty() {
			return None;
		}
		let (segment_index, t) = *intersections1.last().unwrap();
		let (clipped_subpath1, _) = subpath1.split(SubpathTValue::Parametric { segment_index, t });

		// Split the second subpath at its first intersection
		let intersections2 = subpath2.subpath_intersections(subpath1, None, None);
		if intersections2.is_empty() {
			return None;
		}
		let (segment_index, t) = intersections2[0];
		let (_, clipped_subpath2) = subpath2.split(SubpathTValue::Parametric { segment_index, t });

		Some((clipped_subpath1, clipped_subpath2.unwrap()))
	}

	/// Returns a subpath that results from rotating this subpath around the origin by the given angle (in radians).
	/// <iframe frameBorder="0" width="100%" height="325px" src="https://graphite.rs/libraries/bezier-rs#subpath/rotate/solo" title="Rotate Demo"></iframe>
	pub fn rotate(&self, angle: f64) -> Subpath<ManipulatorGroupId> {
		let mut rotated_subpath = self.clone();

		let affine_transform: DAffine2 = DAffine2::from_angle(angle);
		rotated_subpath.apply_transform(affine_transform);

		rotated_subpath
	}

	/// Returns a subpath that results from rotating this subpath around the provided point by the given angle (in radians).
	pub fn rotate_about_point(&self, angle: f64, pivot: DVec2) -> Subpath<ManipulatorGroupId> {
		// Translate before and after the rotation to account for the pivot
		let translate: DAffine2 = DAffine2::from_translation(pivot);
		let rotate: DAffine2 = DAffine2::from_angle(angle);
		let translate_inverse = translate.inverse();

		let mut rotated_subpath = self.clone();
		rotated_subpath.apply_transform(translate * rotate * translate_inverse);
		rotated_subpath
	}

	/// Reduces the segments of the subpath into simple subcurves, then scales each subcurve a set `distance` away.
	/// The intersections of segments of the subpath are joined using the method specified by the `join` argument.
	/// <iframe frameBorder="0" width="100%" height="400px" src="https://graphite.rs/libraries/bezier-rs#subpath/offset/solo" title="Offset Demo"></iframe>
	pub fn offset(&self, distance: f64, join: Join) -> Subpath<ManipulatorGroupId> {
		assert!(self.len_segments() > 1, "Cannot offset an empty Subpath.");

		// An offset at a distance 0 from the curve is simply the same curve
		// An offset of a single point is not defined
		if distance == 0. || self.len() == 1 {
			return self.clone();
		}

		let mut subpaths = self
			.iter()
			.filter(|bezier| !bezier.is_point())
			.map(|bezier| bezier.offset(distance))
			.collect::<Vec<Subpath<ManipulatorGroupId>>>();
		let mut drop_common_point = vec![true; self.len()];

		// Clip or join consecutive Subpaths
		for i in 0..subpaths.len() - 1 {
			let j = i + 1;
			let subpath1 = &subpaths[i];
			let subpath2 = &subpaths[j];

			let last_segment = subpath1.get_segment(subpath1.len_segments() - 1).unwrap();
			let first_segment = subpath2.get_segment(0).unwrap();

			// If the anchors are approximately equal, there is no need to clip / join the segments
			if last_segment.end().abs_diff_eq(first_segment.start(), MAX_ABSOLUTE_DIFFERENCE) {
				continue;
			}

			// Calculate the angle formed between two consecutive Subpaths
			let out_tangent = self.get_segment(i).unwrap().tangent(TValue::Parametric(1.));
			let in_tangent = self.get_segment(j).unwrap().tangent(TValue::Parametric(0.));
			let angle = out_tangent.angle_between(in_tangent);

			// The angle is concave. The Subpath overlap and must be clipped
			let mut apply_join = true;
			if (angle > 0. && distance > 0.) || (angle < 0. && distance < 0.) {
				// If the distance is large enough, there may still be no intersections. Also, if the angle is close enough to zero,
				// subpath intersections may find no intersections. In this case, the points are likely close enough that we can approximate
				// the points as being on top of one another.
				if let Some((clipped_subpath1, clipped_subpath2)) = Subpath::clip_simple_subpaths(subpath1, subpath2) {
					subpaths[i] = clipped_subpath1;
					subpaths[j] = clipped_subpath2;
					apply_join = false;
				}
			}
			// The angle is convex. The Subpath must be joined using the specified join type
			if apply_join {
				drop_common_point[j] = false;
				match join {
					Join::Bevel => {}
					Join::Miter(miter_limit) => {
						let miter_manipulator_group = subpaths[i].miter_line_join(&subpaths[j], miter_limit);
						if let Some(miter_manipulator_group) = miter_manipulator_group {
							subpaths[i].manipulator_groups.push(miter_manipulator_group);
						}
					}
					Join::Round => {
						let (out_handle, round_point, in_handle) = subpaths[i].round_line_join(&subpaths[j], self.manipulator_groups[j].anchor);
						let last_index = subpaths[i].manipulator_groups.len() - 1;
						subpaths[i].manipulator_groups[last_index].out_handle = Some(out_handle);
						subpaths[i].manipulator_groups.push(round_point.clone());
						subpaths[j].manipulator_groups[0].in_handle = Some(in_handle);
					}
				}
			}
		}

		// Clip any overlap in the last segment
		if self.closed {
			let out_tangent = self.get_segment(self.len_segments() - 1).unwrap().tangent(TValue::Parametric(1.));
			let in_tangent = self.get_segment(0).unwrap().tangent(TValue::Parametric(0.));
			let angle = out_tangent.angle_between(in_tangent);

			let mut apply_join = true;
			if (angle > 0. && distance > 0.) || (angle < 0. && distance < 0.) {
				if let Some((clipped_subpath1, clipped_subpath2)) = Subpath::clip_simple_subpaths(&subpaths[subpaths.len() - 1], &subpaths[0]) {
					// Merge the clipped subpaths
					let last_index = subpaths.len() - 1;
					subpaths[last_index] = clipped_subpath1;
					subpaths[0] = clipped_subpath2;
					apply_join = false;
				}
			}
			if apply_join {
				drop_common_point[0] = false;
				match join {
					Join::Bevel => {}
					Join::Miter(miter_limit) => {
						let last_subpath_index = subpaths.len() - 1;
						let miter_manipulator_group = subpaths[last_subpath_index].miter_line_join(&subpaths[0], miter_limit);
						if let Some(miter_manipulator_group) = miter_manipulator_group {
							subpaths[last_subpath_index].manipulator_groups.push(miter_manipulator_group);
						}
					}
					Join::Round => {
						let last_subpath_index = subpaths.len() - 1;
						let (out_handle, round_point, in_handle) = subpaths[last_subpath_index].round_line_join(&subpaths[0], self.manipulator_groups[0].anchor);
						let last_index = subpaths[last_subpath_index].manipulator_groups.len() - 1;
						subpaths[last_subpath_index].manipulator_groups[last_index].out_handle = Some(out_handle);
						subpaths[last_subpath_index].manipulator_groups.push(round_point);
						subpaths[0].manipulator_groups[0].in_handle = Some(in_handle);
					}
				}
			}
		}

		// Merge the subpaths. Drop points which overlap with one another.
		let mut manipulator_groups = subpaths[0].manipulator_groups.clone();
		for i in 1..subpaths.len() {
			if drop_common_point[i] {
				let last_group = manipulator_groups.pop().unwrap();
				let mut manipulators_copy = subpaths[i].manipulator_groups.clone();
				manipulators_copy[0].in_handle = last_group.in_handle;

				manipulator_groups.append(&mut manipulators_copy);
			} else {
				manipulator_groups.append(&mut subpaths[i].manipulator_groups.clone());
			}
		}
		if self.closed && drop_common_point[0] {
			let last_group = manipulator_groups.pop().unwrap();
			manipulator_groups[0].in_handle = last_group.in_handle;
		}

		Subpath::new(manipulator_groups, self.closed)
	}

	/// Helper function to combine the two offsets that make up an outline.
	pub(crate) fn combine_outline(&self, other: &Subpath<ManipulatorGroupId>, cap: Cap) -> Subpath<ManipulatorGroupId> {
		let mut result_manipulator_groups: Vec<ManipulatorGroup<ManipulatorGroupId>> = vec![];
		result_manipulator_groups.extend_from_slice(self.manipulator_groups());
		match cap {
			Cap::Butt => {
				result_manipulator_groups.extend_from_slice(other.manipulator_groups());
			}
			Cap::Round => {
				let last_index = result_manipulator_groups.len() - 1;
				let (out_handle, round_point, in_handle) = self.round_cap(other);
				result_manipulator_groups[last_index].out_handle = Some(out_handle);
				result_manipulator_groups.push(round_point);
				result_manipulator_groups.extend_from_slice(&other.manipulator_groups);
				result_manipulator_groups[last_index + 2].in_handle = Some(in_handle);

				let last_index = result_manipulator_groups.len() - 1;
				let (out_handle, round_point, in_handle) = other.round_cap(self);
				result_manipulator_groups[last_index].out_handle = Some(out_handle);
				result_manipulator_groups.push(round_point);
				result_manipulator_groups[0].in_handle = Some(in_handle);
			}
			Cap::Square => {
				let square_points = self.square_cap(other);
				result_manipulator_groups.extend_from_slice(&square_points);
				result_manipulator_groups.extend_from_slice(other.manipulator_groups());
				let square_points = other.square_cap(self);
				result_manipulator_groups.extend_from_slice(&square_points);
			}
		}
		Subpath::new(result_manipulator_groups, true)
	}

	// TODO: Replace this return type with `Path`, once the `Path` data type has been created.
	/// Outline returns a single closed subpath (if the original subpath was open) or two closed subpaths (if the original subpath was closed) that forms
	/// an approximate outline around the subpath at a specified distance from the curve. Outline takes the following parameters:
	/// - `distance` - The outline's distance from the curve.
	/// - `join` - The join type used to cap the endpoints of open bezier curves, and join successive subpath segments.
	/// <iframe frameBorder="0" width="100%" height="425px" src="https://graphite.rs/libraries/bezier-rs#subpath/outline/solo" title="Outline Demo"></iframe>
	pub fn outline(&self, distance: f64, join: Join, cap: Cap) -> (Subpath<ManipulatorGroupId>, Option<Subpath<ManipulatorGroupId>>) {
		let is_point = self.is_point();
		let (pos_offset, neg_offset) = if is_point {
			let point = self.manipulator_groups[0].anchor;
			(
				Subpath::new(vec![ManipulatorGroup::new_anchor(point + DVec2::NEG_Y * distance)], false),
				Subpath::new(vec![ManipulatorGroup::new_anchor(point + DVec2::Y * distance)], false),
			)
		} else {
			(self.offset(distance, join), self.reverse().offset(distance, join))
		};

		if self.closed && !is_point {
			return (pos_offset, Some(neg_offset));
		}

		(pos_offset.combine_outline(&neg_offset, cap), None)
	}
}

#[cfg(test)]
mod tests {
	use super::{Cap, Join, ManipulatorGroup, Subpath};
	use crate::compare::{compare_points, compare_subpaths, compare_vec_of_points};
	use crate::consts::MAX_ABSOLUTE_DIFFERENCE;
	use crate::utils::{SubpathTValue, TValue};
	use crate::EmptyId;
	use glam::DVec2;

	fn set_up_open_subpath() -> Subpath<EmptyId> {
		let start = DVec2::new(20., 30.);
		let middle1 = DVec2::new(80., 90.);
		let middle2 = DVec2::new(100., 100.);
		let end = DVec2::new(60., 45.);

		let handle1 = DVec2::new(75., 85.);
		let handle2 = DVec2::new(40., 30.);
		let handle3 = DVec2::new(10., 10.);

		Subpath::new(
			vec![
				ManipulatorGroup {
					anchor: start,
					in_handle: None,
					out_handle: Some(handle1),
					id: EmptyId,
				},
				ManipulatorGroup {
					anchor: middle1,
					in_handle: None,
					out_handle: Some(handle2),
					id: EmptyId,
				},
				ManipulatorGroup {
					anchor: middle2,
					in_handle: None,
					out_handle: None,
					id: EmptyId,
				},
				ManipulatorGroup {
					anchor: end,
					in_handle: None,
					out_handle: Some(handle3),
					id: EmptyId,
				},
			],
			false,
		)
	}

	fn set_up_closed_subpath() -> Subpath<EmptyId> {
		let mut subpath = set_up_open_subpath();
		subpath.closed = true;
		subpath
	}

	#[test]
	fn outline_with_single_point_segment() {
		let subpath = Subpath::new(
			vec![
				ManipulatorGroup {
					anchor: DVec2::new(20., 20.),
					out_handle: Some(DVec2::new(10., 90.)),
					in_handle: None,
					id: EmptyId,
				},
				ManipulatorGroup {
					anchor: DVec2::new(150., 40.),
					out_handle: None,
					in_handle: Some(DVec2::new(60., 40.)),
					id: EmptyId,
				},
				ManipulatorGroup {
					anchor: DVec2::new(150., 40.),
					out_handle: Some(DVec2::new(40., 120.)),
					in_handle: None,
					id: EmptyId,
				},
				ManipulatorGroup {
					anchor: DVec2::new(100., 100.),
					out_handle: None,
					in_handle: None,
					id: EmptyId,
				},
			],
			false,
		);

		let outline = subpath.outline(10., crate::Join::Round, crate::Cap::Round).0;
		assert!(outline.manipulator_groups.windows(2).all(|pair| !pair[0].anchor.abs_diff_eq(pair[1].anchor, MAX_ABSOLUTE_DIFFERENCE)));
		assert!(outline.closed());
	}

	#[test]
	fn split_an_open_subpath() {
		let subpath = set_up_open_subpath();
		let location = subpath.evaluate(SubpathTValue::GlobalParametric(0.2));
		let split_pair = subpath.iter().next().unwrap().split(TValue::Parametric((0.2 * 3.) % 1.));
		let (first, second) = subpath.split(SubpathTValue::GlobalParametric(0.2));
		assert!(second.is_some());
		let second = second.unwrap();
		assert_eq!(first.manipulator_groups[1].anchor, location);
		assert_eq!(second.manipulator_groups[0].anchor, location);
		assert_eq!(split_pair[0], first.iter().last().unwrap());
		assert_eq!(split_pair[1], second.iter().next().unwrap());
	}

	#[test]
	fn split_at_start_of_an_open_subpath() {
		let subpath = set_up_open_subpath();
		let location = subpath.evaluate(SubpathTValue::GlobalParametric(0.));
		let split_pair = subpath.iter().next().unwrap().split(TValue::Parametric(0.));
		let (first, second) = subpath.split(SubpathTValue::GlobalParametric(0.));
		assert!(second.is_some());
		let second = second.unwrap();
		assert_eq!(
			first.manipulator_groups[0],
			ManipulatorGroup {
				anchor: location,
				in_handle: None,
				out_handle: None,
				id: EmptyId,
			}
		);
		assert_eq!(first.manipulator_groups.len(), 1);
		assert_eq!(second.manipulator_groups[0].anchor, location);
		assert_eq!(split_pair[1], second.iter().next().unwrap());
	}

	#[test]
	fn split_at_end_of_an_open_subpath() {
		let subpath = set_up_open_subpath();
		let location = subpath.evaluate(SubpathTValue::GlobalParametric(1.));
		let split_pair = subpath.iter().last().unwrap().split(TValue::Parametric(1.));
		let (first, second) = subpath.split(SubpathTValue::GlobalParametric(1.));
		assert!(second.is_some());
		let second = second.unwrap();
		assert_eq!(first.manipulator_groups[3].anchor, location);
		assert_eq!(split_pair[0], first.iter().last().unwrap());
		assert_eq!(
			second.manipulator_groups[0],
			ManipulatorGroup {
				anchor: location,
				in_handle: None,
				out_handle: None,
				id: EmptyId,
			}
		);
		assert_eq!(second.manipulator_groups.len(), 1);
	}

	#[test]
	fn split_a_closed_subpath() {
		let subpath = set_up_closed_subpath();
		let location = subpath.evaluate(SubpathTValue::GlobalParametric(0.2));
		let split_pair = subpath.iter().next().unwrap().split(TValue::Parametric((0.2 * 4.) % 1.));
		let (first, second) = subpath.split(SubpathTValue::GlobalParametric(0.2));
		assert!(second.is_none());
		assert_eq!(first.manipulator_groups[0].anchor, location);
		assert_eq!(first.manipulator_groups[5].anchor, location);
		assert_eq!(first.manipulator_groups.len(), 6);
		assert_eq!(split_pair[0], first.iter().last().unwrap());
		assert_eq!(split_pair[1], first.iter().next().unwrap());
	}

	#[test]
	fn split_at_start_of_a_closed_subpath() {
		let subpath = set_up_closed_subpath();
		let location = subpath.evaluate(SubpathTValue::GlobalParametric(0.));
		let (first, second) = subpath.split(SubpathTValue::GlobalParametric(0.));
		assert!(second.is_none());
		assert_eq!(first.manipulator_groups[0].anchor, location);
		assert_eq!(first.manipulator_groups[4].anchor, location);
		assert_eq!(subpath.manipulator_groups[0..], first.manipulator_groups[..4]);
		assert!(!first.closed);
		assert_eq!(first.iter().last().unwrap(), subpath.iter().last().unwrap());
		assert_eq!(first.iter().next().unwrap(), subpath.iter().next().unwrap());
	}

	#[test]
	fn split_at_end_of_a_closed_subpath() {
		let subpath = set_up_closed_subpath();
		let location = subpath.evaluate(SubpathTValue::GlobalParametric(1.));
		let (first, second) = subpath.split(SubpathTValue::GlobalParametric(1.));
		assert!(second.is_none());
		assert_eq!(first.manipulator_groups[0].anchor, location);
		assert_eq!(first.manipulator_groups[4].anchor, location);
		assert_eq!(subpath.manipulator_groups[0..], first.manipulator_groups[..4]);
		assert!(!first.closed);
		assert_eq!(first.iter().last().unwrap(), subpath.iter().last().unwrap());
		assert_eq!(first.iter().next().unwrap(), subpath.iter().next().unwrap());
	}

	#[test]
	fn reverse_an_open_subpath() {
		let subpath = set_up_open_subpath();
		let temporary = subpath.reverse();
		let result = temporary.reverse();
		let end = result.len();

		assert_eq!(temporary.manipulator_groups[0].anchor, result.manipulator_groups[end - 1].anchor);
		assert_eq!(temporary.manipulator_groups[0].out_handle, result.manipulator_groups[end - 1].in_handle);
		assert_eq!(subpath, result);
	}

	#[test]
	fn reverse_a_closed_subpath() {
		let subpath = set_up_closed_subpath();
		let temporary = subpath.reverse();
		let result = temporary.reverse();
		let end = result.len();

		// Second manipulator group on the temporary subpath should be the reflected version of the last in the result
		assert_eq!(temporary.manipulator_groups[1].anchor, result.manipulator_groups[end - 1].anchor);
		assert_eq!(temporary.manipulator_groups[1].in_handle, result.manipulator_groups[end - 1].out_handle);
		assert_eq!(temporary.manipulator_groups[1].out_handle, result.manipulator_groups[end - 1].in_handle);

		// The first manipulator group in both should be the reflected versions of each other
		assert_eq!(temporary.manipulator_groups[0].anchor, result.manipulator_groups[0].anchor);
		assert_eq!(temporary.manipulator_groups[0].in_handle, result.manipulator_groups[0].out_handle);
		assert_eq!(temporary.manipulator_groups[0].out_handle, result.manipulator_groups[0].in_handle);
		assert_eq!(subpath, result);
	}

	#[test]
	fn trim_an_open_subpath() {
		let subpath = set_up_open_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.2));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.8));
		let [_, trim_front] = subpath.iter().next().unwrap().split(TValue::Parametric((0.2 * 3.) % 1.));
		let [trim_back, _] = subpath.iter().last().unwrap().split(TValue::Parametric((0.8 * 3.) % 1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.2), SubpathTValue::GlobalParametric(0.8));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert_eq!(result.manipulator_groups[3].anchor, location_back);
		assert_eq!(trim_front, result.iter().next().unwrap());
		assert_eq!(trim_back, result.iter().last().unwrap());
	}

	#[test]
	fn trim_within_a_bezier() {
		let subpath = set_up_open_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.1));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.2));
		let trimmed = subpath.iter().next().unwrap().trim(TValue::Parametric((0.1 * 3.) % 1.), TValue::Parametric((0.2 * 3.) % 1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.1), SubpathTValue::GlobalParametric(0.2));
		assert!(compare_points(result.manipulator_groups[0].anchor, location_front));
		assert!(compare_points(result.manipulator_groups[1].anchor, location_back));
		assert_eq!(trimmed, result.iter().next().unwrap());
		assert_eq!(result.len(), 2);
	}

	#[test]
	fn trim_first_segment_of_an_open_subpath() {
		let subpath = set_up_closed_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.25));
		let trimmed = subpath.iter().next().unwrap().trim(TValue::Parametric(0.), TValue::Parametric(1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.), SubpathTValue::GlobalParametric(0.25));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert_eq!(result.manipulator_groups[1].anchor, location_back);
		assert_eq!(trimmed, result.iter().next().unwrap());
	}

	#[test]
	fn trim_second_segment_of_an_open_subpath() {
		let subpath = set_up_closed_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.25));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.5));
		let trimmed = subpath.iter().nth(1).unwrap().trim(TValue::Parametric(0.), TValue::Parametric(1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.25), SubpathTValue::GlobalParametric(0.5));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert_eq!(result.manipulator_groups[1].anchor, location_back);
		assert_eq!(trimmed, result.iter().next().unwrap());
	}

	#[test]
	fn trim_reverse_in_open_subpath() {
		let subpath = set_up_open_subpath();
		let result1 = subpath.trim(SubpathTValue::GlobalParametric(0.8), SubpathTValue::GlobalParametric(0.2));
		let result2 = subpath.trim(SubpathTValue::GlobalParametric(0.2), SubpathTValue::GlobalParametric(0.8));

		assert!(compare_subpaths::<EmptyId>(&result1, &result2));
	}

	#[test]
	fn trim_reverse_within_a_bezier() {
		let subpath = set_up_open_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.1));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.2));
		let trimmed = subpath.iter().next().unwrap().trim(TValue::Parametric((0.2 * 3.) % 1.), TValue::Parametric((0.1 * 3.) % 1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.2), SubpathTValue::GlobalParametric(0.1));

		assert!(compare_points(result.manipulator_groups[0].anchor, location_front));
		assert!(compare_points(result.manipulator_groups[1].anchor, location_back));
		assert!(compare_vec_of_points(
			trimmed.get_points().collect(),
			result.iter().next().unwrap().get_points().collect(),
			MAX_ABSOLUTE_DIFFERENCE
		));
		assert_eq!(result.len(), 2);
	}

	#[test]
	fn trim_a_duplicate_subpath() {
		let subpath = set_up_open_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.), SubpathTValue::GlobalParametric(1.));

		// Assume that resulting subpath would no longer have the any meaningless handles
		let mut expected_subpath = subpath;
		expected_subpath[3].out_handle = None;

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert!(compare_points(result.manipulator_groups[3].anchor, location_back));
		assert_eq!(expected_subpath, result);
	}

	#[test]
	fn trim_a_reversed_duplicate_subpath() {
		let subpath = set_up_open_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(1.), SubpathTValue::GlobalParametric(0.));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert_eq!(result.manipulator_groups[3].anchor, location_back);
		assert!(compare_subpaths::<EmptyId>(&subpath, &result));
	}

	#[test]
	fn trim_to_end_of_subpath() {
		let subpath = set_up_open_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.8));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(1.));
		let trimmed = subpath.iter().last().unwrap().trim(TValue::Parametric((0.8 * 3.) % 1.), TValue::Parametric(1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.8), SubpathTValue::GlobalParametric(1.));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert!(compare_points(result.manipulator_groups[1].anchor, location_back));
		assert_eq!(trimmed, result.iter().next().unwrap());
	}

	#[test]
	fn trim_reversed_to_end_of_subpath() {
		let subpath = set_up_open_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.2));
		let trimmed = subpath.iter().next().unwrap().trim(TValue::Parametric((0.2 * 3.) % 1.), TValue::Parametric(0.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.2), SubpathTValue::GlobalParametric(0.));

		assert!(compare_points(result.manipulator_groups[0].anchor, location_front));
		assert!(compare_points(result.manipulator_groups[1].anchor, location_back));
		assert!(compare_vec_of_points(
			trimmed.get_points().collect(),
			result.iter().next().unwrap().get_points().collect(),
			MAX_ABSOLUTE_DIFFERENCE
		));
	}

	#[test]
	fn trim_start_point() {
		let subpath = set_up_open_subpath();
		let location = subpath.evaluate(SubpathTValue::GlobalParametric(0.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.), SubpathTValue::GlobalParametric(0.));

		assert!(compare_points(result.manipulator_groups[0].anchor, location));
		assert!(result.manipulator_groups[0].in_handle.is_none());
		assert!(result.manipulator_groups[0].out_handle.is_none());
		assert_eq!(result.len(), 1);
	}

	#[test]
	fn trim_middle_point() {
		let subpath = set_up_closed_subpath();
		let location = subpath.evaluate(SubpathTValue::GlobalParametric(0.25));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.25), SubpathTValue::GlobalParametric(0.25));

		assert!(compare_points(result.manipulator_groups[0].anchor, location));
		assert!(result.manipulator_groups[0].in_handle.is_none());
		assert!(result.manipulator_groups[0].out_handle.is_none());
		assert_eq!(result.len(), 1);
	}

	#[test]
	fn trim_a_closed_subpath() {
		let subpath = set_up_closed_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.2));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.8));
		let [_, trim_front] = subpath.iter().next().unwrap().split(TValue::Parametric((0.2 * 4.) % 1.));
		let [trim_back, _] = subpath.iter().last().unwrap().split(TValue::Parametric((0.8 * 4.) % 1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.2), SubpathTValue::GlobalParametric(0.8));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert_eq!(result.manipulator_groups[4].anchor, location_back);
		assert_eq!(trim_front, result.iter().next().unwrap());
		assert_eq!(trim_back, result.iter().last().unwrap());
	}

	#[test]
	fn trim_to_end_of_closed_subpath() {
		let subpath = set_up_closed_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.8));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(1.));
		let trimmed = subpath.iter().last().unwrap().trim(TValue::Parametric((0.8 * 4.) % 1.), TValue::Parametric(1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.8), SubpathTValue::GlobalParametric(1.));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert!(compare_points(result.manipulator_groups[1].anchor, location_back));
		assert_eq!(trimmed, result.iter().next().unwrap());
	}

	#[test]
	fn trim_across_break_in_a_closed_subpath() {
		let subpath = set_up_closed_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.8));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.2));
		let [_, trim_front] = subpath.iter().last().unwrap().split(TValue::Parametric((0.8 * 4.) % 1.));
		let [trim_back, _] = subpath.iter().next().unwrap().split(TValue::Parametric((0.2 * 4.) % 1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.8), SubpathTValue::GlobalParametric(0.2));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert_eq!(result.manipulator_groups[2].anchor, location_back);
		assert_eq!(trim_front, result.iter().next().unwrap());
		assert_eq!(trim_back, result.iter().last().unwrap());
	}

	#[test]
	fn trim_across_break_in_a_closed_subpath_where_result_is_multiple_segments() {
		let subpath = set_up_closed_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.6));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.4));
		let [_, trim_front] = subpath.iter().nth(2).unwrap().split(TValue::Parametric((0.6 * 4.) % 1.));
		let [trim_back, _] = subpath.iter().nth(1).unwrap().split(TValue::Parametric((0.4 * 4.) % 1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.6), SubpathTValue::GlobalParametric(0.4));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert_eq!(result.manipulator_groups[4].anchor, location_back);
		assert_eq!(trim_front, result.iter().next().unwrap());
		assert_eq!(trim_back, result.iter().last().unwrap());
	}

	#[test]
	fn trim_across_break_in_a_closed_subpath_where_ends_are_in_same_segment() {
		let subpath = set_up_closed_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.45));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.4));
		let [_, trim_front] = subpath.iter().nth(1).unwrap().split(TValue::Parametric((0.45 * 4.) % 1.));
		let [trim_back, _] = subpath.iter().nth(1).unwrap().split(TValue::Parametric((0.4 * 4.) % 1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.45), SubpathTValue::GlobalParametric(0.4));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert_eq!(result.manipulator_groups[5].anchor, location_back);
		assert_eq!(trim_front, result.iter().next().unwrap());
		assert_eq!(trim_back, result.iter().last().unwrap());
	}

	#[test]
	fn trim_at_break_in_closed_subpath_where_end_is_0() {
		let subpath = set_up_closed_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(0.8));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.));
		let trimmed = subpath.iter().last().unwrap().trim(TValue::Parametric((0.8 * 4.) % 1.), TValue::Parametric(1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(0.8), SubpathTValue::GlobalParametric(0.));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert_eq!(result.manipulator_groups[1].anchor, location_back);
		assert_eq!(trimmed, result.iter().next().unwrap());
	}

	#[test]
	fn trim_at_break_in_closed_subpath_where_start_is_1() {
		let subpath = set_up_closed_subpath();
		let location_front = subpath.evaluate(SubpathTValue::GlobalParametric(1.));
		let location_back = subpath.evaluate(SubpathTValue::GlobalParametric(0.2));
		let trimmed = subpath.iter().next().unwrap().trim(TValue::Parametric(0.), TValue::Parametric((0.2 * 4.) % 1.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(1.), SubpathTValue::GlobalParametric(0.2));

		assert_eq!(result.manipulator_groups[0].anchor, location_front);
		assert_eq!(result.manipulator_groups[1].anchor, location_back);
		assert_eq!(trimmed, result.iter().next().unwrap());
	}

	#[test]
	fn trim_at_break_in_closed_subpath_from_1_to_0() {
		let subpath = set_up_closed_subpath();
		let location = subpath.evaluate(SubpathTValue::GlobalParametric(0.));
		let result = subpath.trim(SubpathTValue::GlobalParametric(1.), SubpathTValue::GlobalParametric(0.));

		assert_eq!(result.manipulator_groups[0].anchor, location);
		assert!(result.manipulator_groups[0].in_handle.is_none());
		assert!(result.manipulator_groups[0].out_handle.is_none());
		assert_eq!(result.manipulator_groups.len(), 1);
	}

	#[test]
	fn outline_single_point_circle() {
		let ellipse: Subpath<EmptyId> = Subpath::new_ellipse(DVec2::new(0., 0.), DVec2::new(50., 50.)).reverse();
		let p = DVec2::new(25., 25.);

		let subpath: Subpath<EmptyId> = Subpath::from_anchors([p, p, p], false);
		let outline_open = subpath.outline(25., Join::Bevel, Cap::Round);
		assert_eq!(outline_open.0, ellipse);
		assert_eq!(outline_open.1, None);

		let subpath_closed: Subpath<EmptyId> = Subpath::from_anchors([p, p, p], true);
		let outline_closed = subpath_closed.outline(25., Join::Bevel, Cap::Round);
		assert_eq!(outline_closed.0, ellipse);
		assert_eq!(outline_closed.1, None);
	}

	#[test]
	fn outline_single_point_square() {
		let square: Subpath<EmptyId> = Subpath::from_anchors(
			[
				DVec2::new(25., 0.),
				DVec2::new(0., 0.),
				DVec2::new(0., 50.),
				DVec2::new(25., 50.),
				DVec2::new(50., 50.),
				DVec2::new(50., 0.),
			],
			true,
		);
		let p = DVec2::new(25., 25.);

		let subpath: Subpath<EmptyId> = Subpath::from_anchors([p, p, p], false);
		let outline_open = subpath.outline(25., Join::Bevel, Cap::Square);
		assert_eq!(outline_open.0, square);
		assert_eq!(outline_open.1, None);

		let subpath_closed: Subpath<EmptyId> = Subpath::from_anchors([p, p, p], true);
		let outline_closed = subpath_closed.outline(25., Join::Bevel, Cap::Square);
		assert_eq!(outline_closed.0, square);
		assert_eq!(outline_closed.1, None);
	}
}