1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
use super::*;
use crate::consts::{DEFAULT_EUCLIDEAN_ERROR_BOUND, DEFAULT_LUT_STEP_SIZE};
use crate::utils::{SubpathTValue, TValue, TValueType};
use crate::ProjectionOptions;
use glam::DVec2;

/// Functionality relating to looking up properties of the `Subpath` or points along the `Subpath`.
impl<ManipulatorGroupId: crate::Identifier> Subpath<ManipulatorGroupId> {
	/// Return a selection of equidistant points on the bezier curve.
	/// If no value is provided for `steps`, then the function will default `steps` to be 10.
	/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/lookup-table/solo" title="Lookup-Table Demo"></iframe>
	pub fn compute_lookup_table(&self, steps: Option<usize>, tvalue_type: Option<TValueType>) -> Vec<DVec2> {
		let steps = steps.unwrap_or(DEFAULT_LUT_STEP_SIZE);
		let tvalue_type = tvalue_type.unwrap_or(TValueType::Parametric);

		(0..=steps)
			.map(|t| {
				let tvalue = match tvalue_type {
					TValueType::Parametric => SubpathTValue::GlobalParametric(t as f64 / steps as f64),
					TValueType::Euclidean => SubpathTValue::GlobalEuclidean(t as f64 / steps as f64),
				};
				self.evaluate(tvalue)
			})
			.collect()
	}

	/// Return the sum of the approximation of the length of each `Bezier` curve along the `Subpath`.
	/// - `num_subdivisions` - Number of subdivisions used to approximate the curve. The default value is `1000`.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/length/solo" title="Length Demo"></iframe>
	pub fn length(&self, num_subdivisions: Option<usize>) -> f64 {
		self.iter().map(|bezier| bezier.length(num_subdivisions)).sum()
	}

	/// Converts from a subpath (composed of multiple segments) to a point along a certain segment represented.
	/// The returned tuple represents the segment index and the `t` value along that segment.
	/// Both the input global `t` value and the output `t` value are in euclidean space, meaning there is a constant rate of change along the arc length.
	pub fn global_euclidean_to_local_euclidean(&self, global_t: f64, lengths: &[f64], total_length: f64) -> (usize, f64) {
		let mut accumulator = 0.;
		for (index, length) in lengths.iter().enumerate() {
			let length_ratio = length / total_length;
			if (index == 0 || accumulator <= global_t) && global_t <= accumulator + length_ratio {
				return (index, ((global_t - accumulator) / length_ratio).clamp(0., 1.));
			}
			accumulator += length_ratio;
		}
		(self.len() - 2, 1.)
	}

	/// Convert a [SubpathTValue] to a parametric `(segment_index, t)` tuple.
	/// - Asserts that `t` values contained within the `SubpathTValue` argument lie in the range [0, 1].
	/// - If the argument is a variant containing a `segment_index`, asserts that the index references a valid segment on the curve.
	pub(crate) fn t_value_to_parametric(&self, t: SubpathTValue) -> (usize, f64) {
		assert!(self.len_segments() >= 1);

		match t {
			SubpathTValue::Parametric { segment_index, t } => {
				assert!((0.0..=1.).contains(&t));
				assert!((0..self.len_segments()).contains(&segment_index));
				(segment_index, t)
			}
			SubpathTValue::GlobalParametric(global_t) => {
				assert!((0.0..=1.).contains(&global_t));

				if global_t == 1. {
					return (self.len_segments() - 1, 1.);
				}

				let scaled_t = global_t * self.len_segments() as f64;
				let segment_index = scaled_t.floor() as usize;
				let t = scaled_t - segment_index as f64;

				(segment_index, t)
			}
			SubpathTValue::Euclidean { segment_index, t } => {
				assert!((0.0..=1.).contains(&t));
				assert!((0..self.len_segments()).contains(&segment_index));
				(segment_index, self.get_segment(segment_index).unwrap().euclidean_to_parametric(t, DEFAULT_EUCLIDEAN_ERROR_BOUND))
			}
			SubpathTValue::GlobalEuclidean(t) => {
				let lengths = self.iter().map(|bezier| bezier.length(None)).collect::<Vec<f64>>();
				let total_length: f64 = lengths.iter().sum();
				let (segment_index, segment_t_euclidean) = self.global_euclidean_to_local_euclidean(t, lengths.as_slice(), total_length);
				let segment_t_parametric = self.get_segment(segment_index).unwrap().euclidean_to_parametric(segment_t_euclidean, DEFAULT_EUCLIDEAN_ERROR_BOUND);
				(segment_index, segment_t_parametric)
			}
			SubpathTValue::EuclideanWithinError { segment_index, t, error } => {
				assert!((0.0..=1.).contains(&t));
				assert!((0..self.len_segments()).contains(&segment_index));
				(segment_index, self.get_segment(segment_index).unwrap().euclidean_to_parametric(t, error))
			}
			SubpathTValue::GlobalEuclideanWithinError { t, error } => {
				let lengths = self.iter().map(|bezier| bezier.length(None)).collect::<Vec<f64>>();
				let total_length: f64 = lengths.iter().sum();
				let (segment_index, segment_t) = self.global_euclidean_to_local_euclidean(t, lengths.as_slice(), total_length);
				(segment_index, self.get_segment(segment_index).unwrap().euclidean_to_parametric(segment_t, error))
			}
		}
	}

	/// Returns the segment index and `t` value that corresponds to the closest point on the curve to the provided point.
	/// Uses a searching algorithm akin to binary search that can be customized using the [ProjectionOptions] structure.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/project/solo" title="Project Demo"></iframe>
	pub fn project(&self, point: DVec2, options: Option<ProjectionOptions>) -> Option<(usize, f64)> {
		if self.is_empty() {
			return None;
		}

		// TODO: Optimization opportunity: Filter out segments which are *definitely* not the closest to the given point
		let (index, (_, project_t)) = self
			.iter()
			.map(|bezier| {
				let project_t = bezier.project(point, options);
				(bezier.evaluate(TValue::Parametric(project_t)).distance(point), project_t)
			})
			.enumerate()
			.min_by(|(_, (distance1, _)), (_, (distance2, _))| distance1.total_cmp(distance2))
			.unwrap_or((0, (0., 0.))); // If the Subpath contains only a single manipulator group, returns (0, 0.)

		Some((index, project_t))
	}
}

#[cfg(test)]
mod tests {
	use crate::consts::MAX_ABSOLUTE_DIFFERENCE;
	use crate::utils::f64_compare;

	use super::*;

	#[test]
	fn length_quadratic() {
		let start = DVec2::new(20., 30.);
		let middle = DVec2::new(80., 90.);
		let end = DVec2::new(60., 45.);
		let handle1 = DVec2::new(75., 85.);
		let handle2 = DVec2::new(40., 30.);
		let handle3 = DVec2::new(10., 10.);

		let bezier1 = Bezier::from_quadratic_dvec2(start, handle1, middle);
		let bezier2 = Bezier::from_quadratic_dvec2(middle, handle2, end);
		let bezier3 = Bezier::from_quadratic_dvec2(end, handle3, start);

		let mut subpath = Subpath::new(
			vec![
				ManipulatorGroup {
					anchor: start,
					in_handle: None,
					out_handle: Some(handle1),
					id: EmptyId,
				},
				ManipulatorGroup {
					anchor: middle,
					in_handle: None,
					out_handle: Some(handle2),
					id: EmptyId,
				},
				ManipulatorGroup {
					anchor: end,
					in_handle: None,
					out_handle: Some(handle3),
					id: EmptyId,
				},
			],
			false,
		);
		assert_eq!(subpath.length(None), bezier1.length(None) + bezier2.length(None));

		subpath.closed = true;
		assert_eq!(subpath.length(None), bezier1.length(None) + bezier2.length(None) + bezier3.length(None));
	}

	#[test]
	fn length_mixed() {
		let start = DVec2::new(20., 30.);
		let middle = DVec2::new(70., 70.);
		let end = DVec2::new(60., 45.);
		let handle1 = DVec2::new(75., 85.);
		let handle2 = DVec2::new(40., 30.);
		let handle3 = DVec2::new(10., 10.);

		let linear_bezier = Bezier::from_linear_dvec2(start, middle);
		let quadratic_bezier = Bezier::from_quadratic_dvec2(middle, handle1, end);
		let cubic_bezier = Bezier::from_cubic_dvec2(end, handle2, handle3, start);

		let mut subpath = Subpath::new(
			vec![
				ManipulatorGroup {
					anchor: start,
					in_handle: Some(handle3),
					out_handle: None,
					id: EmptyId,
				},
				ManipulatorGroup {
					anchor: middle,
					in_handle: None,
					out_handle: Some(handle1),
					id: EmptyId,
				},
				ManipulatorGroup {
					anchor: end,
					in_handle: None,
					out_handle: Some(handle2),
					id: EmptyId,
				},
			],
			false,
		);
		assert_eq!(subpath.length(None), linear_bezier.length(None) + quadratic_bezier.length(None));

		subpath.closed = true;
		assert_eq!(subpath.length(None), linear_bezier.length(None) + quadratic_bezier.length(None) + cubic_bezier.length(None));
	}

	#[test]
	fn t_value_to_parametric_global_parametric_open_subpath() {
		let mock_manipulator_group = ManipulatorGroup {
			anchor: DVec2::new(0., 0.),
			in_handle: None,
			out_handle: None,
			id: EmptyId,
		};
		let open_subpath = Subpath {
			manipulator_groups: vec![mock_manipulator_group; 5],
			closed: false,
		};

		let (segment_index, t) = open_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(0.7));
		assert_eq!(segment_index, 2);
		assert!(f64_compare(t, 0.8, MAX_ABSOLUTE_DIFFERENCE));

		// The start and end points of an open subpath are NOT equivalent
		assert_eq!(open_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(0.)), (0, 0.));
		assert_eq!(open_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(1.)), (3, 1.));
	}

	#[test]
	fn t_value_to_parametric_global_parametric_closed_subpath() {
		let mock_manipulator_group = ManipulatorGroup {
			anchor: DVec2::new(0., 0.),
			in_handle: None,
			out_handle: None,
			id: EmptyId,
		};
		let closed_subpath = Subpath {
			manipulator_groups: vec![mock_manipulator_group; 5],
			closed: true,
		};

		let (segment_index, t) = closed_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(0.7));
		assert_eq!(segment_index, 3);
		assert!(f64_compare(t, 0.5, MAX_ABSOLUTE_DIFFERENCE));

		// The start and end points of a closed subpath are equivalent
		assert_eq!(closed_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(0.)), (0, 0.));
		assert_eq!(closed_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(1.)), (4, 1.));
	}

	#[test]
	fn exact_start_end() {
		let start = DVec2::new(20., 30.);
		let end = DVec2::new(60., 45.);
		let handle = DVec2::new(75., 85.);

		let subpath: Subpath<EmptyId> = Subpath::from_bezier(&Bezier::from_quadratic_dvec2(start, handle, end));

		assert_eq!(subpath.evaluate(SubpathTValue::GlobalEuclidean(0.0)), start);
		assert_eq!(subpath.evaluate(SubpathTValue::GlobalEuclidean(1.0)), end);
	}
}