1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
use super::*;

use crate::compare::compare_points;
use crate::utils::{f64_compare, Cap, TValue};
use crate::{AppendType, ManipulatorGroup, Subpath};

use glam::DMat2;
use std::f64::consts::PI;

/// Functionality that transform Beziers, such as split, reduce, offset, etc.
impl Bezier {
	/// Returns a linear approximation of the given [Bezier]. For higher order [Bezier], this means simply dropping the handles.
	pub fn to_linear(&self) -> Bezier {
		Bezier::from_linear_dvec2(self.start(), self.end())
	}

	/// Returns a quadratic approximation of the given [Bezier]. For cubic Bezier, which typically cannot be represented by a single
	/// quadratic segment, this function simply takes the average of the cubic handles to be the new quadratic handle.
	pub fn to_quadratic(&self) -> Bezier {
		let handle = match self.handles {
			BezierHandles::Linear => self.start,
			BezierHandles::Quadratic { handle } => handle,
			BezierHandles::Cubic { handle_start, handle_end } => (handle_start + handle_end) / 2.,
		};
		Bezier::from_quadratic_dvec2(self.start, handle, self.end)
	}

	/// Returns a cubic approximation of the given [Bezier].
	pub fn to_cubic(&self) -> Bezier {
		let (handle_start, handle_end) = match self.handles {
			BezierHandles::Linear => (self.start, self.end),
			// Conversion reference source: https://stackoverflow.com/a/63059651/775283
			BezierHandles::Quadratic { handle } => (self.start + (2. / 3.) * (handle - self.start), self.end + (2. / 3.) * (handle - self.end)),
			BezierHandles::Cubic { handle_start: _, handle_end: _ } => return *self,
		};
		Bezier::from_cubic_dvec2(self.start, handle_start, handle_end, self.end)
	}

	/// Returns the pair of Bezier curves that result from splitting the original curve at the point `t` along the curve.
	/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#bezier/split/solo" title="Split Demo"></iframe>
	pub fn split(&self, t: TValue) -> [Bezier; 2] {
		let t = self.t_value_to_parametric(t);
		let split_point = self.evaluate(TValue::Parametric(t));

		match self.handles {
			BezierHandles::Linear => [Bezier::from_linear_dvec2(self.start, split_point), Bezier::from_linear_dvec2(split_point, self.end)],
			// TODO: Actually calculate the correct handle locations
			BezierHandles::Quadratic { handle } => {
				let t_minus_one = t - 1.;
				[
					Bezier::from_quadratic_dvec2(self.start, t * handle - t_minus_one * self.start, split_point),
					Bezier::from_quadratic_dvec2(split_point, t * self.end - t_minus_one * handle, self.end),
				]
			}
			BezierHandles::Cubic { handle_start, handle_end } => {
				let t_minus_one = t - 1.;
				[
					Bezier::from_cubic_dvec2(
						self.start,
						t * handle_start - t_minus_one * self.start,
						(t * t) * handle_end - 2. * t * t_minus_one * handle_start + (t_minus_one * t_minus_one) * self.start,
						split_point,
					),
					Bezier::from_cubic_dvec2(
						split_point,
						(t * t) * self.end - 2. * t * t_minus_one * handle_end + (t_minus_one * t_minus_one) * handle_start,
						t * self.end - t_minus_one * handle_end,
						self.end,
					),
				]
			}
		}
	}

	/// Returns a reversed version of the Bezier curve.
	pub fn reverse(&self) -> Bezier {
		match self.handles {
			BezierHandles::Linear => Bezier::from_linear_dvec2(self.end, self.start),
			BezierHandles::Quadratic { handle } => Bezier::from_quadratic_dvec2(self.end, handle, self.start),
			BezierHandles::Cubic { handle_start, handle_end } => Bezier::from_cubic_dvec2(self.end, handle_end, handle_start, self.start),
		}
	}

	/// Returns the Bezier curve representing the sub-curve between the two provided points.
	/// It will start at the point corresponding to the smaller of `t1` and `t2`, and end at the point corresponding to the larger of `t1` and `t2`.
	/// <iframe frameBorder="0" width="100%" height="400px" src="https://graphite.rs/libraries/bezier-rs#bezier/trim/solo" title="Trim Demo"></iframe>
	pub fn trim(&self, t1: TValue, t2: TValue) -> Bezier {
		let (mut t1, mut t2) = (self.t_value_to_parametric(t1), self.t_value_to_parametric(t2));
		// If t1 is equal to t2, return a bezier comprised entirely of the same point
		if f64_compare(t1, t2, MAX_ABSOLUTE_DIFFERENCE) {
			let point = self.evaluate(TValue::Parametric(t1));
			return match self.handles {
				BezierHandles::Linear => Bezier::from_linear_dvec2(point, point),
				BezierHandles::Quadratic { handle: _ } => Bezier::from_quadratic_dvec2(point, point, point),
				BezierHandles::Cubic { handle_start: _, handle_end: _ } => Bezier::from_cubic_dvec2(point, point, point, point),
			};
		} else if t1 > t2 {
			(t1, t2) = (t2, t1)
		}
		let bezier_ending_at_t2 = self.split(TValue::Parametric(t2))[0];
		// Adjust the ratio `t1` to its corresponding value on the new curve that was split on `t2`
		let adjusted_t1 = t1 / t2;
		bezier_ending_at_t2.split(TValue::Parametric(adjusted_t1))[1]
	}

	/// Returns a Bezier curve that results from applying the transformation function to each point in the Bezier.
	pub fn apply_transformation(&self, transformation_function: impl Fn(DVec2) -> DVec2) -> Bezier {
		let transformed_start = transformation_function(self.start);
		let transformed_end = transformation_function(self.end);
		match self.handles {
			BezierHandles::Linear => Bezier::from_linear_dvec2(transformed_start, transformed_end),
			BezierHandles::Quadratic { handle } => {
				let transformed_handle = transformation_function(handle);
				Bezier::from_quadratic_dvec2(transformed_start, transformed_handle, transformed_end)
			}
			BezierHandles::Cubic { handle_start, handle_end } => {
				let transformed_handle_start = transformation_function(handle_start);
				let transformed_handle_end = transformation_function(handle_end);
				Bezier::from_cubic_dvec2(transformed_start, transformed_handle_start, transformed_handle_end, transformed_end)
			}
		}
	}

	/// Returns a Bezier curve that results from rotating the curve around the origin by the given angle (in radians).
	/// <iframe frameBorder="0" width="100%" height="325px" src="https://graphite.rs/libraries/bezier-rs#bezier/rotate/solo" title="Rotate Demo"></iframe>
	pub fn rotate(&self, angle: f64) -> Bezier {
		let rotation_matrix = DMat2::from_angle(angle);
		self.apply_transformation(|point| rotation_matrix.mul_vec2(point))
	}

	/// Returns a Bezier curve that results from rotating the curve around the provided point by the given angle (in radians).
	pub fn rotate_about_point(&self, angle: f64, pivot: DVec2) -> Bezier {
		let rotation_matrix = DMat2::from_angle(angle);
		self.apply_transformation(|point| rotation_matrix.mul_vec2(point - pivot) + pivot)
	}

	/// Returns a Bezier curve that results from translating the curve by the given `DVec2`.
	pub fn translate(&self, translation: DVec2) -> Bezier {
		self.apply_transformation(|point| point + translation)
	}

	/// Determine if it is possible to scale the given curve, using the following conditions:
	/// 1. All the handles are located on a single side of the curve.
	/// 2. The on-curve point for `t = 0.5` must occur roughly in the center of the polygon defined by the curve's endpoint normals.
	/// See [the offset section](https://pomax.github.io/bezierinfo/#offsetting) of Pomax's bezier curve primer for more details.
	fn is_scalable(&self) -> bool {
		if self.handles == BezierHandles::Linear {
			return true;
		}
		// Verify all the handles are located on a single side of the curve.
		if let BezierHandles::Cubic { handle_start, handle_end } = self.handles {
			let angle_1 = (self.end - self.start).angle_between(handle_start - self.start);
			let angle_2 = (self.end - self.start).angle_between(handle_end - self.start);
			if (angle_1 > 0. && angle_2 < 0.) || (angle_1 < 0. && angle_2 > 0.) {
				return false;
			}
		}
		// Verify the angle formed by the endpoint normals is sufficiently small, ensuring the on-curve point for `t = 0.5` occurs roughly in the center of the polygon.
		let normal_0 = self.normal(TValue::Parametric(0.));
		let normal_1 = self.normal(TValue::Parametric(1.));
		let endpoint_normal_angle = (normal_0.x * normal_1.x + normal_0.y * normal_1.y).min(1.).acos();
		endpoint_normal_angle < SCALABLE_CURVE_MAX_ENDPOINT_NORMAL_ANGLE
	}

	/// Add the bezier endpoints if not already present, and combine and sort the dimensional extrema.
	pub(crate) fn get_extrema_t_list(&self) -> Vec<f64> {
		let mut extrema = self.local_extrema().into_iter().flatten().collect::<Vec<f64>>();
		extrema.append(&mut vec![0., 1.]);
		extrema.sort_by(|ex1, ex2| ex1.partial_cmp(ex2).unwrap());
		extrema.dedup();
		extrema
	}

	/// Returns a tuple of the scalable subcurves and the corresponding `t` values that were used to split the curve.
	/// This function may introduce gaps if subsections of the curve are not reducible.
	/// The function takes the following parameter:
	/// - `step_size` - Dictates the granularity at which the function searches for reducible subcurves. The default value is `0.01`.
	///   A small granularity may increase the chance the function does not introduce gaps, but will increase computation time.
	pub(crate) fn reduced_curves_and_t_values(&self, step_size: Option<f64>) -> (Vec<Bezier>, Vec<[f64; 2]>) {
		// A linear segment is scalable, so return itself
		if let BezierHandles::Linear = self.handles {
			return (vec![*self], vec![[0., 1.]]);
		}

		let step_size = step_size.unwrap_or(DEFAULT_REDUCE_STEP_SIZE);

		let mut extrema = self.get_extrema_t_list();
		if let BezierHandles::Cubic { handle_start: _, handle_end: _ } = self.handles {
			extrema.append(&mut self.inflections());
			extrema.sort_by(|ex1, ex2| ex1.partial_cmp(ex2).unwrap());
		}

		// Split each subcurve such that each resulting segment is scalable.
		let mut result_beziers: Vec<Bezier> = Vec::new();
		let mut result_t_values: Vec<[f64; 2]> = vec![];

		extrema.windows(2).for_each(|t_pair| {
			let t_subcurve_start = t_pair[0];
			let t_subcurve_end = t_pair[1];
			let subcurve = self.trim(TValue::Parametric(t_subcurve_start), TValue::Parametric(t_subcurve_end));
			// Perform no processing on the subcurve if it's already scalable.
			if subcurve.is_scalable() {
				result_beziers.push(subcurve);
				result_t_values.push([t_subcurve_start, t_subcurve_end]);
				return;
			}

			// Greedily iterate across the subcurve at intervals of size `step_size` to break up the curve into maximally large segments
			let mut segment: Bezier;
			let mut t1 = 0.;
			let mut t2 = step_size;
			let mut is_prev_valid = false;
			while t2 <= 1. + step_size {
				segment = subcurve.trim(TValue::Parametric(t1), TValue::Parametric(f64::min(t2, 1.)));
				if !segment.is_scalable() {
					t2 -= step_size;

					// If the previous step does not exist, the start of the subcurve is irreducible.
					// Otherwise, add the valid segment from the previous step to the result.
					if is_prev_valid {
						segment = subcurve.trim(TValue::Parametric(t1), TValue::Parametric(t2));
						if segment.is_scalable() {
							result_beziers.push(segment);
							result_t_values.push([t_subcurve_start + t1 * (t_subcurve_end - t_subcurve_start), t_subcurve_start + t2 * (t_subcurve_end - t_subcurve_start)]);
						} else {
							t2 = t1 + step_size;
						}
					} else {
						t2 = t1 + step_size;
					}
					t1 = t2;
					is_prev_valid = false;
				} else {
					is_prev_valid = true;
				}
				t2 += step_size;
			}
			// Collect final remainder of the curve.
			if t1 < 1. {
				segment = subcurve.trim(TValue::Parametric(t1), TValue::Parametric(1.));
				if segment.is_scalable() {
					result_beziers.push(segment);
					result_t_values.push([t_subcurve_start + t1 * (t_subcurve_end - t_subcurve_start), t_subcurve_end]);
				}
			}
		});
		(result_beziers, result_t_values)
	}

	/// Split the curve into a number of scalable subcurves. This function may introduce gaps if subsections of the curve are not reducible.
	/// The function takes the following parameter:
	/// - `step_size` - Dictates the granularity at which the function searches for reducible subcurves. The default value is `0.01`.
	///   A small granularity may increase the chance the function does not introduce gaps, but will increase computation time.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/reduce/solo" title="Reduce Demo"></iframe>
	pub fn reduce(&self, step_size: Option<f64>) -> Vec<Bezier> {
		self.reduced_curves_and_t_values(step_size).0
	}

	/// Scale will translate a bezier curve a fixed distance away from its original position, and stretch/compress the transformed curve to match the translation ratio.
	/// Note that not all bezier curves are possible to scale, so this function asserts that the provided curve is scalable.
	/// A proof for why this is true can be found in the [Curve offsetting section](https://pomax.github.io/bezierinfo/#offsetting) of Pomax's bezier curve primer.
	/// `scale` takes the parameter `distance`, which is the distance away from the curve that the new one will be scaled to. Positive values will scale the curve in the
	/// same direction as the endpoint normals, while negative values will scale in the opposite direction.
	fn scale(&self, distance: f64) -> Bezier {
		assert!(self.is_scalable(), "The curve provided to scale is not scalable. Reduce the curve first.");

		let normal_start = self.normal(TValue::Parametric(0.));
		let normal_end = self.normal(TValue::Parametric(1.));

		// If normal unit vectors are equal, then the lines are parallel
		if normal_start.abs_diff_eq(normal_end, MAX_ABSOLUTE_DIFFERENCE) {
			return self.translate(distance * normal_start);
		}

		// Find the intersection point of the endpoint normals
		let intersection = utils::line_intersection(self.start, normal_start, self.end, normal_end);

		// If the Bezier is a quadratic, convert it to a cubic to increase expressiveness
		let intermediate = match self.handles {
			BezierHandles::Quadratic { handle: _ } => self.to_cubic(),
			_ => *self,
		};

		let should_flip_direction = (self.start - intersection).normalize().abs_diff_eq(normal_start, MAX_ABSOLUTE_DIFFERENCE);
		intermediate.apply_transformation(|point| {
			let mut direction_unit_vector = (intersection - point).normalize();
			if should_flip_direction {
				direction_unit_vector *= -1.;
			}
			point + distance * direction_unit_vector
		})
	}

	/// Version of the `scale` function which scales the curve such that the start of the scaled curve is `start_distance` from the original curve, while the end of
	/// of the scaled curve is `end_distance` from the original curve. The curve transitions from `start_distance` to `end_distance` gradually, proportional to the
	/// distance along the equation (`t`-value) of the curve.
	pub fn graduated_scale(&self, start_distance: f64, end_distance: f64) -> Bezier {
		assert!(self.is_scalable(), "The curve provided to scale is not scalable. Reduce the curve first.");

		// If the Bezier is a quadratic, convert it to a cubic to increase expressiveness
		let intermediate = match self.handles {
			BezierHandles::Quadratic { handle: _ } => self.to_cubic(),
			_ => *self,
		};

		let normal_start = intermediate.normal(TValue::Parametric(0.));
		let normal_end = intermediate.normal(TValue::Parametric(1.));

		// If normal unit vectors are equal, then the lines are parallel
		if normal_start.abs_diff_eq(normal_end, MAX_ABSOLUTE_DIFFERENCE) {
			let transformed_start = utils::scale_point_from_direction_vector(intermediate.start, intermediate.normal(TValue::Parametric(0.)), false, start_distance);
			let transformed_end = utils::scale_point_from_direction_vector(intermediate.end, intermediate.normal(TValue::Parametric(1.)), false, end_distance);

			return match intermediate.handles {
				BezierHandles::Linear => Bezier::from_linear_dvec2(transformed_start, transformed_end),
				BezierHandles::Quadratic { handle: _ } => unreachable!(),
				BezierHandles::Cubic { handle_start, handle_end } => {
					let handle_start_closest_t = intermediate.project(handle_start, None);
					let handle_start_scale_distance = (1. - handle_start_closest_t) * start_distance + handle_start_closest_t * end_distance;
					let transformed_handle_start =
						utils::scale_point_from_direction_vector(handle_start, intermediate.normal(TValue::Parametric(handle_start_closest_t)), false, handle_start_scale_distance);

					let handle_end_closest_t = intermediate.project(handle_start, None);
					let handle_end_scale_distance = (1. - handle_end_closest_t) * start_distance + handle_end_closest_t * end_distance;
					let transformed_handle_end = utils::scale_point_from_direction_vector(handle_end, intermediate.normal(TValue::Parametric(handle_end_closest_t)), false, handle_end_scale_distance);
					Bezier::from_cubic_dvec2(transformed_start, transformed_handle_start, transformed_handle_end, transformed_end)
				}
			};
		}

		// Find the intersection point of the endpoint normals
		let intersection = utils::line_intersection(intermediate.start, normal_start, intermediate.end, normal_end);
		let should_flip_direction = (intermediate.start - intersection).normalize().abs_diff_eq(normal_start, MAX_ABSOLUTE_DIFFERENCE);

		let transformed_start = utils::scale_point_from_origin(intermediate.start, intersection, should_flip_direction, start_distance);
		let transformed_end = utils::scale_point_from_origin(intermediate.end, intersection, should_flip_direction, end_distance);

		match intermediate.handles {
			BezierHandles::Linear => Bezier::from_linear_dvec2(transformed_start, transformed_end),
			BezierHandles::Quadratic { handle: _ } => unreachable!(),
			BezierHandles::Cubic { handle_start, handle_end } => {
				let handle_start_scale_distance = (start_distance * 2. + end_distance) / 3.;
				let transformed_handle_start = utils::scale_point_from_origin(handle_start, intersection, should_flip_direction, handle_start_scale_distance);

				let handle_end_scale_distance = (start_distance + end_distance * 2.) / 3.;
				let transformed_handle_end = utils::scale_point_from_origin(handle_end, intersection, should_flip_direction, handle_end_scale_distance);
				Bezier::from_cubic_dvec2(transformed_start, transformed_handle_start, transformed_handle_end, transformed_end)
			}
		}
	}

	/// Offset will break down the Bezier into reducible subcurves, and scale each subcurve a set distance from the original curve.
	/// Note that not all bezier curves are possible to offset, so this function first reduces the curve to scalable segments and then offsets those segments.
	/// A proof for why this is true can be found in the [Curve offsetting section](https://pomax.github.io/bezierinfo/#offsetting) of Pomax's bezier curve primer.
	/// Offset takes the following parameter:
	/// - `distance` - The offset's distance from the curve. Positive values will offset the curve in the same direction as the endpoint normals,
	/// while negative values will offset in the opposite direction.
	/// <iframe frameBorder="0" width="100%" height="325px" src="https://graphite.rs/libraries/bezier-rs#bezier/offset/solo" title="Offset Demo"></iframe>
	pub fn offset<ManipulatorGroupId: crate::Identifier>(&self, distance: f64) -> Subpath<ManipulatorGroupId> {
		if self.is_point() {
			return Subpath::from_bezier(self);
		}
		let reduced = self.reduce(None);
		let mut scaled = Subpath::new(vec![], false);
		reduced.iter().enumerate().for_each(|(index, bezier)| {
			let scaled_bezier = bezier.scale(distance);
			if !bezier.is_point() {
				if index > 0 && !compare_points(bezier.start(), reduced[index - 1].end()) {
					scaled.append_bezier(&scaled_bezier, AppendType::SmoothJoin(MAX_ABSOLUTE_DIFFERENCE));
				} else {
					scaled.append_bezier(&scaled_bezier, AppendType::IgnoreStart);
				}
			}
		});

		// If the curve is not linear, smooth the handles. All segments produced by bezier::scale will be cubic.
		if self.handles != BezierHandles::Linear {
			scaled.smooth_open_subpath();
		}

		scaled
	}

	/// Version of the `offset` function which scales the offset such that the start of the offset is `start_distance` from the original curve, while the end of
	/// of the offset is `end_distance` from the original curve. The curve transitions from `start_distance` to `end_distance` gradually, proportional to the
	/// distance along the equation (`t`-value) of the curve. Similarly to the `offset` function, the returned result is an approximation.
	pub fn graduated_offset<ManipulatorGroupId: crate::Identifier>(&self, start_distance: f64, end_distance: f64) -> Subpath<ManipulatorGroupId> {
		let reduced = self.reduce(None);
		let mut next_start_distance = start_distance;
		let distance_difference = end_distance - start_distance;
		let total_length = self.length(None);
		if total_length < MAX_ABSOLUTE_DIFFERENCE {
			return Subpath::new(vec![], false);
		}

		let mut result = Subpath::new(vec![], false);
		reduced.iter().enumerate().for_each(|(index, bezier)| {
			if !bezier.is_point() {
				let current_length = bezier.length(None);
				let next_end_distance = next_start_distance + (current_length / total_length) * distance_difference;
				let scaled_bezier = bezier.graduated_scale(next_start_distance, next_end_distance);

				if index > 0 && !compare_points(bezier.start(), reduced[index - 1].end()) {
					result.append_bezier(&scaled_bezier, AppendType::SmoothJoin(MAX_ABSOLUTE_DIFFERENCE));
				} else {
					result.append_bezier(&scaled_bezier, AppendType::IgnoreStart);
				}
				next_start_distance = next_end_distance;
			}
		});

		// If the curve is not linear, smooth the handles. All segments produced by bezier::scale will be cubic.
		if self.handles != BezierHandles::Linear {
			result.smooth_open_subpath();
		}

		result
	}

	/// Outline will return a vector of Beziers that creates an outline around the curve at the designated distance away from the curve.
	/// It makes use of the `offset` function, thus restrictions applicable to `offset` are relevant to this function as well.
	/// The 'caps', the linear segments at opposite ends of the outline, intersect the original curve at the midpoint of the cap.
	/// Outline takes the following parameter:
	/// - `distance` - The outline's distance from the curve.
	/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#bezier/outline/solo" title="Outline Demo"></iframe>
	pub fn outline<ManipulatorGroupId: crate::Identifier>(&self, distance: f64, cap: Cap) -> Subpath<ManipulatorGroupId> {
		let (pos_offset, neg_offset) = if self.is_point() {
			(
				Subpath::new(vec![ManipulatorGroup::new_anchor(self.start() + DVec2::NEG_Y * distance)], false),
				Subpath::new(vec![ManipulatorGroup::new_anchor(self.start() + DVec2::Y * distance)], false),
			)
		} else {
			(self.offset(distance), self.reverse().offset(distance))
		};

		if pos_offset.is_empty() || neg_offset.is_empty() {
			return Subpath::new(vec![], false);
		}

		pos_offset.combine_outline(&neg_offset, cap)
	}

	/// Version of the `outline` function which draws the outline at the specified distances away from the curve.
	/// The outline begins `start_distance` away, and gradually move to being `end_distance` away.
	/// <iframe frameBorder="0" width="100%" height="400px" src="https://graphite.rs/libraries/bezier-rs#bezier/graduated-outline/solo" title="Graduated Outline Demo"></iframe>
	pub fn graduated_outline<ManipulatorGroupId: crate::Identifier>(&self, start_distance: f64, end_distance: f64, cap: Cap) -> Subpath<ManipulatorGroupId> {
		self.skewed_outline(start_distance, end_distance, end_distance, start_distance, cap)
	}

	/// Version of the `graduated_outline` function that allows for the 4 corners of the outline to be different distances away from the curve.
	/// <iframe frameBorder="0" width="100%" height="475px" src="https://graphite.rs/libraries/bezier-rs#bezier/skewed-outline/solo" title="Skewed Outline Demo"></iframe>
	pub fn skewed_outline<ManipulatorGroupId: crate::Identifier>(&self, distance1: f64, distance2: f64, distance3: f64, distance4: f64, cap: Cap) -> Subpath<ManipulatorGroupId> {
		let (pos_offset, neg_offset) = if self.is_point() {
			(
				Subpath::new(vec![ManipulatorGroup::new_anchor(self.start() + DVec2::NEG_Y * distance1)], false),
				Subpath::new(vec![ManipulatorGroup::new_anchor(self.start() + DVec2::Y * distance1)], false),
			)
		} else {
			(self.graduated_offset(distance1, distance2), self.reverse().graduated_offset(distance3, distance4))
		};

		if pos_offset.is_empty() || neg_offset.is_empty() {
			return Subpath::new(vec![], false);
		}

		pos_offset.combine_outline(&neg_offset, cap)
	}

	/// Approximate a bezier curve with circular arcs.
	/// The algorithm can be customized using the [ArcsOptions] structure.
	/// <iframe frameBorder="0" width="100%" height="400px" src="https://graphite.rs/libraries/bezier-rs#bezier/arcs/solo" title="Arcs Demo"></iframe>
	pub fn arcs(&self, arcs_options: ArcsOptions) -> Vec<CircleArc> {
		let ArcsOptions {
			strategy: maximize_arcs,
			error,
			max_iterations,
		} = arcs_options;

		match maximize_arcs {
			ArcStrategy::Automatic => {
				let (auto_arcs, final_low_t) = self.approximate_curve_with_arcs(0., 1., error, max_iterations, true);
				let arc_approximations = self.split(TValue::Parametric(final_low_t))[1].arcs(ArcsOptions {
					strategy: ArcStrategy::FavorCorrectness,
					error,
					max_iterations,
				});
				if final_low_t != 1. {
					[auto_arcs, arc_approximations].concat()
				} else {
					auto_arcs
				}
			}
			ArcStrategy::FavorLargerArcs => self.approximate_curve_with_arcs(0., 1., error, max_iterations, false).0,
			ArcStrategy::FavorCorrectness => self
				.get_extrema_t_list()
				.windows(2)
				.flat_map(|t_pair| self.approximate_curve_with_arcs(t_pair[0], t_pair[1], error, max_iterations, false).0)
				.collect::<Vec<CircleArc>>(),
		}
	}

	/// Implements an algorithm that approximates a bezier curve with circular arcs.
	/// This algorithm uses a method akin to binary search to find an arc that approximates a maximal segment of the curve.
	/// Once a maximal arc has been found for a sub-segment of the curve, the algorithm continues by starting again at the end of the previous approximation.
	/// More details can be found in the [Approximating a Bezier curve with circular arcs](https://pomax.github.io/bezierinfo/#arcapproximation) section of Pomax's bezier curve primer.
	/// A caveat with this algorithm is that it is possible to find erroneous approximations in cases such as in a very narrow `U`.
	/// - `stop_when_invalid`: Used to determine whether the algorithm should terminate early if erroneous approximations are encountered.
	///
	/// Returns a tuple where the first element is the list of circular arcs and the second is the `t` value where the next segment should start from.
	/// The second value will be `1.` except for when `stop_when_invalid` is true and an invalid approximation is encountered.
	fn approximate_curve_with_arcs(&self, local_low: f64, local_high: f64, error: f64, max_iterations: usize, stop_when_invalid: bool) -> (Vec<CircleArc>, f64) {
		let mut low = local_low;
		let mut middle = (local_low + local_high) / 2.;
		let mut high = local_high;
		let mut previous_high = local_high;

		let mut iterations = 0;
		let mut previous_arc = CircleArc::default();
		let mut was_previous_good = false;
		let mut arcs = Vec::new();

		// Outer loop to iterate over the curve
		while low < local_high {
			// Inner loop to find the next maximal segment of the curve that can be approximated with a circular arc
			while iterations <= max_iterations {
				iterations += 1;
				let p1 = self.evaluate(TValue::Parametric(low));
				let p2 = self.evaluate(TValue::Parametric(middle));
				let p3 = self.evaluate(TValue::Parametric(high));

				let wrapped_center = utils::compute_circle_center_from_points(p1, p2, p3);
				// If the segment is linear, move on to next segment
				if wrapped_center.is_none() {
					previous_high = high;
					low = high;
					high = 1.;
					middle = (low + high) / 2.;
					was_previous_good = false;
					break;
				}

				let center = wrapped_center.unwrap();
				let radius = center.distance(p1);

				let angle_p1 = DVec2::new(1., 0.).angle_between(p1 - center);
				let angle_p2 = DVec2::new(1., 0.).angle_between(p2 - center);
				let angle_p3 = DVec2::new(1., 0.).angle_between(p3 - center);

				let mut start_angle = angle_p1;
				let mut end_angle = angle_p3;

				// Adjust start and end angles of the arc to ensure that it travels in the counter-clockwise direction
				if angle_p1 < angle_p3 {
					if angle_p2 < angle_p1 || angle_p3 < angle_p2 {
						std::mem::swap(&mut start_angle, &mut end_angle);
					}
				} else if angle_p2 < angle_p1 && angle_p3 < angle_p2 {
					std::mem::swap(&mut start_angle, &mut end_angle);
				}

				let new_arc = CircleArc {
					center,
					radius,
					start_angle,
					end_angle,
				};

				// Use points in between low, middle, and high to evaluate how well the arc approximates the curve
				let e1 = self.evaluate(TValue::Parametric((low + middle) / 2.));
				let e2 = self.evaluate(TValue::Parametric((middle + high) / 2.));

				// Iterate until we find the largest good approximation such that the next iteration is not a good approximation with an arc
				if utils::f64_compare(radius, e1.distance(center), error) && utils::f64_compare(radius, e2.distance(center), error) {
					// Check if the good approximation is actually valid: the sector angle cannot be larger than 180 degrees (PI radians)
					let mut sector_angle = end_angle - start_angle;
					if sector_angle < 0. {
						sector_angle += 2. * PI;
					}
					if stop_when_invalid && sector_angle > PI {
						return (arcs, low);
					}
					if high == local_high {
						// Found the final arc approximation
						arcs.push(new_arc);
						low = high;
						break;
					}
					// If the approximation is good, expand the segment by half to try finding a larger good approximation
					previous_high = high;
					high = (high + (high - low) / 2.).min(local_high);
					middle = (low + high) / 2.;
					previous_arc = new_arc;
					was_previous_good = true;
				} else if was_previous_good {
					// If the previous approximation was good and the current one is bad, then we use the previous good approximation
					arcs.push(previous_arc);

					// Continue searching for approximations for the rest of the curve
					low = previous_high;
					high = local_high;
					middle = low + (high - low) / 2.;
					was_previous_good = false;
					break;
				} else {
					// If no good approximation has been seen yet, try again with half the segment
					previous_high = high;
					high = middle;
					middle = low + (high - low) / 2.;
					previous_arc = new_arc;
				}
			}
		}

		(arcs, low)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::compare::{compare_arcs, compare_points};
	use crate::utils::{Cap, TValue};
	use crate::EmptyId;

	#[test]
	fn test_split() {
		let line = Bezier::from_linear_coordinates(25., 25., 75., 75.);
		let [part1, part2] = line.split(TValue::Parametric(0.5));

		assert_eq!(part1.start(), line.start());
		assert_eq!(part1.end(), line.evaluate(TValue::Parametric(0.5)));
		assert_eq!(part1.evaluate(TValue::Parametric(0.5)), line.evaluate(TValue::Parametric(0.25)));

		assert_eq!(part2.start(), line.evaluate(TValue::Parametric(0.5)));
		assert_eq!(part2.end(), line.end());
		assert_eq!(part2.evaluate(TValue::Parametric(0.5)), line.evaluate(TValue::Parametric(0.75)));

		let quad_bezier = Bezier::from_quadratic_coordinates(10., 10., 50., 50., 90., 10.);
		let [part3, part4] = quad_bezier.split(TValue::Parametric(0.5));

		assert_eq!(part3.start(), quad_bezier.start());
		assert_eq!(part3.end(), quad_bezier.evaluate(TValue::Parametric(0.5)));
		assert_eq!(part3.evaluate(TValue::Parametric(0.5)), quad_bezier.evaluate(TValue::Parametric(0.25)));

		assert_eq!(part4.start(), quad_bezier.evaluate(TValue::Parametric(0.5)));
		assert_eq!(part4.end(), quad_bezier.end());
		assert_eq!(part4.evaluate(TValue::Parametric(0.5)), quad_bezier.evaluate(TValue::Parametric(0.75)));

		let cubic_bezier = Bezier::from_cubic_coordinates(10., 10., 50., 50., 90., 10., 40., 50.);
		let [part5, part6] = cubic_bezier.split(TValue::Parametric(0.5));

		assert_eq!(part5.start(), cubic_bezier.start());
		assert_eq!(part5.end(), cubic_bezier.evaluate(TValue::Parametric(0.5)));
		assert_eq!(part5.evaluate(TValue::Parametric(0.5)), cubic_bezier.evaluate(TValue::Parametric(0.25)));

		assert_eq!(part6.start(), cubic_bezier.evaluate(TValue::Parametric(0.5)));
		assert_eq!(part6.end(), cubic_bezier.end());
		assert_eq!(part6.evaluate(TValue::Parametric(0.5)), cubic_bezier.evaluate(TValue::Parametric(0.75)));
	}

	#[test]
	fn test_split_at_anchors() {
		let start = DVec2::new(30., 50.);
		let end = DVec2::new(160., 170.);

		let bezier_quadratic = Bezier::from_quadratic_dvec2(start, DVec2::new(140., 30.), end);

		// Test splitting a quadratic bezier at the startpoint
		let [point_bezier1, remainder1] = bezier_quadratic.split(TValue::Parametric(0.));
		assert_eq!(point_bezier1, Bezier::from_quadratic_dvec2(start, start, start));
		assert!(remainder1.abs_diff_eq(&bezier_quadratic, MAX_ABSOLUTE_DIFFERENCE));

		// Test splitting a quadratic bezier at the endpoint
		let [remainder2, point_bezier2] = bezier_quadratic.split(TValue::Parametric(1.));
		assert_eq!(point_bezier2, Bezier::from_quadratic_dvec2(end, end, end));
		assert!(remainder2.abs_diff_eq(&bezier_quadratic, MAX_ABSOLUTE_DIFFERENCE));

		let bezier_cubic = Bezier::from_cubic_dvec2(start, DVec2::new(60., 140.), DVec2::new(150., 30.), end);

		// Test splitting a cubic bezier at the startpoint
		let [point_bezier3, remainder3] = bezier_cubic.split(TValue::Parametric(0.));
		assert_eq!(point_bezier3, Bezier::from_cubic_dvec2(start, start, start, start));
		assert!(remainder3.abs_diff_eq(&bezier_cubic, MAX_ABSOLUTE_DIFFERENCE));

		// Test splitting a cubic bezier at the endpoint
		let [remainder4, point_bezier4] = bezier_cubic.split(TValue::Parametric(1.));
		assert_eq!(point_bezier4, Bezier::from_cubic_dvec2(end, end, end, end));
		assert!(remainder4.abs_diff_eq(&bezier_cubic, MAX_ABSOLUTE_DIFFERENCE));
	}

	#[test]
	fn test_trim() {
		let line = Bezier::from_linear_coordinates(80., 80., 40., 40.);
		let trimmed1 = line.trim(TValue::Parametric(0.25), TValue::Parametric(0.75));

		assert_eq!(trimmed1.start(), line.evaluate(TValue::Parametric(0.25)));
		assert_eq!(trimmed1.end(), line.evaluate(TValue::Parametric(0.75)));
		assert_eq!(trimmed1.evaluate(TValue::Parametric(0.5)), line.evaluate(TValue::Parametric(0.5)));

		let quadratic_bezier = Bezier::from_quadratic_coordinates(80., 80., 40., 40., 70., 70.);
		let trimmed2 = quadratic_bezier.trim(TValue::Parametric(0.25), TValue::Parametric(0.75));

		assert_eq!(trimmed2.start(), quadratic_bezier.evaluate(TValue::Parametric(0.25)));
		assert_eq!(trimmed2.end(), quadratic_bezier.evaluate(TValue::Parametric(0.75)));
		assert_eq!(trimmed2.evaluate(TValue::Parametric(0.5)), quadratic_bezier.evaluate(TValue::Parametric(0.5)));

		let cubic_bezier = Bezier::from_cubic_coordinates(80., 80., 40., 40., 70., 70., 150., 150.);
		let trimmed3 = cubic_bezier.trim(TValue::Parametric(0.25), TValue::Parametric(0.75));

		assert!(trimmed3.start().abs_diff_eq(cubic_bezier.evaluate(TValue::Parametric(0.25)), MAX_ABSOLUTE_DIFFERENCE));
		assert_eq!(trimmed3.end(), cubic_bezier.evaluate(TValue::Parametric(0.75)));
		assert_eq!(trimmed3.evaluate(TValue::Parametric(0.5)), cubic_bezier.evaluate(TValue::Parametric(0.5)));
	}

	#[test]
	fn test_trim_t2_greater_than_t1() {
		// Test trimming quadratic curve when t2 > t1
		let bezier_quadratic = Bezier::from_quadratic_coordinates(30., 50., 140., 30., 160., 170.);
		let trim1 = bezier_quadratic.trim(TValue::Parametric(0.25), TValue::Parametric(0.75));
		let trim2 = bezier_quadratic.trim(TValue::Parametric(0.75), TValue::Parametric(0.25));
		assert!(trim1.abs_diff_eq(&trim2, MAX_ABSOLUTE_DIFFERENCE));

		// Test trimming cubic curve when t2 > t1
		let bezier_cubic = Bezier::from_cubic_coordinates(30., 30., 60., 140., 150., 30., 160., 160.);
		let trim3 = bezier_cubic.trim(TValue::Parametric(0.25), TValue::Parametric(0.75));
		let trim4 = bezier_cubic.trim(TValue::Parametric(0.75), TValue::Parametric(0.25));
		assert!(trim3.abs_diff_eq(&trim4, MAX_ABSOLUTE_DIFFERENCE));
	}

	#[test]
	fn test_rotate() {
		let bezier_linear = Bezier::from_linear_coordinates(30., 60., 140., 120.);
		let rotated_bezier_linear = bezier_linear.rotate(-PI / 2.);
		let expected_bezier_linear = Bezier::from_linear_coordinates(60., -30., 120., -140.);
		assert!(rotated_bezier_linear.abs_diff_eq(&expected_bezier_linear, MAX_ABSOLUTE_DIFFERENCE));

		let bezier_quadratic = Bezier::from_quadratic_coordinates(30., 50., 140., 30., 160., 170.);
		let rotated_bezier_quadratic = bezier_quadratic.rotate(PI);
		let expected_bezier_quadratic = Bezier::from_quadratic_coordinates(-30., -50., -140., -30., -160., -170.);
		assert!(rotated_bezier_quadratic.abs_diff_eq(&expected_bezier_quadratic, MAX_ABSOLUTE_DIFFERENCE));

		let bezier = Bezier::from_cubic_coordinates(30., 30., 60., 140., 150., 30., 160., 160.);
		let rotated_bezier = bezier.rotate(PI / 2.);
		let expected_bezier = Bezier::from_cubic_coordinates(-30., 30., -140., 60., -30., 150., -160., 160.);
		assert!(rotated_bezier.abs_diff_eq(&expected_bezier, MAX_ABSOLUTE_DIFFERENCE));
	}

	#[test]
	fn test_translate() {
		let bezier_linear = Bezier::from_linear_coordinates(30., 60., 140., 120.);
		let rotated_bezier_linear = bezier_linear.translate(DVec2::new(10., 10.));
		let expected_bezier_linear = Bezier::from_linear_coordinates(40., 70., 150., 130.);
		assert!(rotated_bezier_linear.abs_diff_eq(&expected_bezier_linear, MAX_ABSOLUTE_DIFFERENCE));

		let bezier_quadratic = Bezier::from_quadratic_coordinates(30., 50., 140., 30., 160., 170.);
		let rotated_bezier_quadratic = bezier_quadratic.translate(DVec2::new(-10., 10.));
		let expected_bezier_quadratic = Bezier::from_quadratic_coordinates(20., 60., 130., 40., 150., 180.);
		assert!(rotated_bezier_quadratic.abs_diff_eq(&expected_bezier_quadratic, MAX_ABSOLUTE_DIFFERENCE));

		let bezier = Bezier::from_cubic_coordinates(30., 30., 60., 140., 150., 30., 160., 160.);
		let translated_bezier = bezier.translate(DVec2::new(10., -10.));
		let expected_bezier = Bezier::from_cubic_coordinates(40., 20., 70., 130., 160., 20., 170., 150.);
		assert!(translated_bezier.abs_diff_eq(&expected_bezier, MAX_ABSOLUTE_DIFFERENCE));
	}

	#[test]
	fn test_reduce() {
		let p1 = DVec2::new(0., 0.);
		let p2 = DVec2::new(50., 50.);
		let p3 = DVec2::new(0., 0.);
		let bezier = Bezier::from_quadratic_dvec2(p1, p2, p3);

		let reduced_curves = bezier.reduce(None);
		assert!(reduced_curves.iter().all(|bezier| bezier.is_scalable()));

		// Check that the reduce helper is correct
		let (helper_curves, helper_t_values) = bezier.reduced_curves_and_t_values(None);
		assert!(reduced_curves
			.iter()
			.zip(helper_curves.iter())
			.all(|(bezier1, bezier2)| bezier1.abs_diff_eq(bezier2, MAX_ABSOLUTE_DIFFERENCE)));
		assert!(reduced_curves
			.iter()
			.zip(helper_t_values.iter())
			.all(|(curve, t_pair)| curve.abs_diff_eq(&bezier.trim(TValue::Parametric(t_pair[0]), TValue::Parametric(t_pair[1])), MAX_ABSOLUTE_DIFFERENCE)))
	}

	fn assert_valid_offset<ManipulatorGroupId: crate::Identifier>(bezier: &Bezier, offset: &Subpath<ManipulatorGroupId>, expected_distance: f64) {
		// Verify that the offset is smooth
		if offset.len() > 1 {
			offset.iter().take(offset.len() - 2).zip(offset.iter().skip(1)).for_each(|beziers_pair| {
				assert!(compare_points(beziers_pair.0.end, beziers_pair.1.start));
				assert!(compare_points(beziers_pair.0.normal(TValue::Parametric(1.)), beziers_pair.1.normal(TValue::Parametric(0.))));
			});
		}

		// Verify that the offset spans the length of the curve
		let start_distance = bezier.evaluate(TValue::Parametric(0.)).distance(offset.iter().next().unwrap().evaluate(TValue::Parametric(0.)));
		assert!(f64_compare(start_distance, expected_distance, MAX_ABSOLUTE_DIFFERENCE));
		let end_distance = bezier.evaluate(TValue::Parametric(1.)).distance(offset.iter().last().unwrap().evaluate(TValue::Parametric(1.)));
		assert!(f64_compare(end_distance, expected_distance, MAX_ABSOLUTE_DIFFERENCE));

		let err_threshold = expected_distance / 10.;
		// Sample the curve and verify that the offset lies at the correct distance from the curve.
		// Collect the t-value associated with the point on the bezier closest to the sample.
		let t_values: Vec<f64> = offset
			.iter()
			.flat_map(|offset_segment| {
				[0.1, 0.25, 0.5, 0.75, 0.9]
					.iter()
					.map(|t| {
						let offset_point = offset_segment.evaluate(TValue::Parametric(*t));
						let closest_point_t = bezier.project(offset_point, None);
						let closest_point = bezier.evaluate(TValue::Parametric(closest_point_t));
						let actual_distance = offset_point.distance(closest_point);

						assert!(f64_compare(actual_distance, expected_distance, err_threshold));
						closest_point_t
					})
					.collect::<Vec<f64>>()
			})
			.collect();

		// Verify that the curve segments are in the correct order by asserting that t_values is sorted
		for i in 1..t_values.len() {
			assert!(t_values[i - 1] < t_values[i]);
		}
	}

	#[test]
	fn test_offset_linear() {
		let start = DVec2::new(30., 60.);
		let end = DVec2::new(140., 120.);
		let bezier = Bezier::from_linear_dvec2(start, end);

		for distance in [-20., -10., 10., 20.] {
			let offset = bezier.offset::<EmptyId>(distance);
			assert_valid_offset(&bezier, &offset, distance.abs());
		}
	}

	#[test]
	fn test_offset_quadratic() {
		let start = DVec2::new(30., 50.);
		let handle = DVec2::new(140., 30.);
		let end = DVec2::new(160., 170.);
		let bezier = Bezier::from_quadratic_dvec2(start, handle, end);

		for distance in [-20., -10., 10., 20.] {
			let offset = bezier.offset::<EmptyId>(distance);
			assert_valid_offset(&bezier, &offset, distance.abs());
		}
	}

	#[test]
	fn test_offset_cubic() {
		let start = DVec2::new(30., 30.);
		let handle1 = DVec2::new(60., 140.);
		let handle2 = DVec2::new(150., 30.);
		let end = DVec2::new(160., 160.);
		let bezier = Bezier::from_cubic_dvec2(start, handle1, handle2, end);

		for distance in [-20., -10., 10., 20.] {
			let offset = bezier.offset::<EmptyId>(distance);
			assert_valid_offset(&bezier, &offset, distance.abs());
		}
	}

	#[test]
	fn test_offset_curve_that_has_a_single_point_after_reduce() {
		let p1 = DVec2::new(30., 30.);
		let p2 = DVec2::new(150., 29.);
		let p3 = DVec2::new(150., 30.);
		let p4 = DVec2::new(160., 160.);

		let bezier = Bezier::from_cubic_dvec2(p1, p2, p3, p4);

		let reduce = bezier.reduce(None);
		let offset = bezier.offset::<EmptyId>(15.);
		assert!(reduce.last().is_some());
		assert!(reduce.last().unwrap().is_point());
		// Expect the single point bezier to be dropped in the offset
		assert_eq!(reduce.len(), offset.len_segments() + 1);
	}

	#[test]
	fn test_outline() {
		let p1 = DVec2::new(30., 50.);
		let p2 = DVec2::new(140., 30.);
		let line = Bezier::from_linear_dvec2(p1, p2);
		let outline = line.outline::<EmptyId>(10., Cap::Butt);

		assert_eq!(outline.len(), 4);

		// Assert the first length-wise piece of the outline is 10 units from the line
		assert!(f64_compare(
			outline.iter().next().unwrap().evaluate(TValue::Parametric(0.25)).distance(line.evaluate(TValue::Parametric(0.25))),
			10.,
			MAX_ABSOLUTE_DIFFERENCE
		)); // f64

		// Assert the first cap touches the line end point at the halfway point
		assert!(outline.iter().nth(1).unwrap().evaluate(TValue::Parametric(0.5)).abs_diff_eq(line.end(), MAX_ABSOLUTE_DIFFERENCE));

		// Assert the second length-wise piece of the outline is 10 units from the line
		assert!(f64_compare(
			outline.iter().nth(2).unwrap().evaluate(TValue::Parametric(0.25)).distance(line.evaluate(TValue::Parametric(0.75))),
			10.,
			MAX_ABSOLUTE_DIFFERENCE
		)); // f64

		// Assert the second cap touches the line start point at the halfway point
		assert!(outline.iter().nth(3).unwrap().evaluate(TValue::Parametric(0.5)).abs_diff_eq(line.start(), MAX_ABSOLUTE_DIFFERENCE));
	}

	#[test]
	fn test_outline_single_point_circle() {
		let ellipse: Subpath<EmptyId> = Subpath::new_ellipse(DVec2::new(0., 0.), DVec2::new(50., 50.)).reverse();
		let p = DVec2::new(25., 25.);

		let line = Bezier::from_linear_dvec2(p, p);
		let outline = line.outline::<EmptyId>(25., Cap::Round);
		assert_eq!(outline, ellipse);

		let cubic = Bezier::from_cubic_dvec2(p, p, p, p);
		let outline_cubic = cubic.outline::<EmptyId>(25., Cap::Round);
		assert_eq!(outline_cubic, ellipse);
	}

	#[test]
	fn test_outline_single_point_square() {
		let square: Subpath<EmptyId> = Subpath::from_anchors(
			[
				DVec2::new(25., 0.),
				DVec2::new(0., 0.),
				DVec2::new(0., 50.),
				DVec2::new(25., 50.),
				DVec2::new(50., 50.),
				DVec2::new(50., 0.),
			],
			true,
		);
		let p = DVec2::new(25., 25.);

		let line = Bezier::from_linear_dvec2(p, p);
		let outline = line.outline::<EmptyId>(25., Cap::Square);
		assert_eq!(outline, square);

		let cubic = Bezier::from_cubic_dvec2(p, p, p, p);
		let outline_cubic = cubic.outline::<EmptyId>(25., Cap::Square);
		assert_eq!(outline_cubic, square);
	}

	#[test]
	fn test_graduated_scale() {
		let bezier = Bezier::from_linear_coordinates(30., 60., 140., 120.);
		bezier.graduated_scale(10., 20.);
	}

	#[test]
	fn test_graduated_scale_quadratic() {
		let bezier = Bezier::from_quadratic_coordinates(30., 50., 82., 98., 160., 170.);
		let scaled_bezier = bezier.graduated_scale(30., 30.);

		dbg!(scaled_bezier);

		// Assert the scaled bezier is 30 units from the line
		assert!(f64_compare(
			scaled_bezier.evaluate(TValue::Parametric(0.)).distance(bezier.evaluate(TValue::Parametric(0.))),
			30.,
			MAX_ABSOLUTE_DIFFERENCE
		));
		assert!(f64_compare(
			scaled_bezier.evaluate(TValue::Parametric(1.)).distance(bezier.evaluate(TValue::Parametric(1.))),
			30.,
			MAX_ABSOLUTE_DIFFERENCE
		));
		assert!(f64_compare(
			scaled_bezier.evaluate(TValue::Parametric(0.5)).distance(bezier.evaluate(TValue::Parametric(0.5))),
			30.,
			MAX_ABSOLUTE_DIFFERENCE
		));
	}

	#[test]
	fn test_arcs_linear() {
		let bezier = Bezier::from_linear_coordinates(30., 60., 140., 120.);
		let linear_arcs = bezier.arcs(ArcsOptions::default());
		assert!(linear_arcs.is_empty());
	}

	#[test]
	fn test_arcs_quadratic() {
		let bezier1 = Bezier::from_quadratic_coordinates(30., 30., 50., 50., 100., 100.);
		assert!(bezier1.arcs(ArcsOptions::default()).is_empty());

		let bezier2 = Bezier::from_quadratic_coordinates(50., 50., 85., 65., 100., 100.);
		let actual_arcs = bezier2.arcs(ArcsOptions::default());
		let expected_arc = CircleArc {
			center: DVec2::new(15., 135.),
			radius: 91.92388,
			start_angle: -1.18019,
			end_angle: -0.39061,
		};
		assert_eq!(actual_arcs.len(), 1);
		assert!(compare_arcs(actual_arcs[0], expected_arc));
	}

	#[test]
	fn test_arcs_cubic() {
		let bezier = Bezier::from_cubic_coordinates(30., 30., 30., 80., 60., 80., 60., 140.);
		let actual_arcs = bezier.arcs(ArcsOptions::default());
		let expected_arcs = [
			CircleArc {
				center: DVec2::new(122.394877, 30.7777189),
				radius: 92.39815,
				start_angle: 2.5637146,
				end_angle: -3.1331755,
			},
			CircleArc {
				center: DVec2::new(-47.54881, 136.169378),
				radius: 107.61701,
				start_angle: -0.53556,
				end_angle: 0.0356025,
			},
		];

		assert_eq!(actual_arcs.len(), 2);
		assert!(compare_arcs(actual_arcs[0], expected_arcs[0]));
		assert!(compare_arcs(actual_arcs[1], expected_arcs[1]));

		// Bezier that contains the erroneous case when maximizing arcs
		let bezier2 = Bezier::from_cubic_coordinates(48., 176., 170., 10., 30., 90., 180., 160.);
		let auto_arcs = bezier2.arcs(ArcsOptions::default());

		let extrema_arcs = bezier2.arcs(ArcsOptions {
			strategy: ArcStrategy::FavorCorrectness,
			..ArcsOptions::default()
		});

		let maximal_arcs = bezier2.arcs(ArcsOptions {
			strategy: ArcStrategy::FavorLargerArcs,
			..ArcsOptions::default()
		});

		// Resulting automatic arcs match the maximal results until the bad arc (in this case, only index 0 should match)
		assert_eq!(auto_arcs[0], maximal_arcs[0]);
		// Check that the first result from MaximizeArcs::Automatic should not equal the first results from MaximizeArcs::Off
		assert_ne!(auto_arcs[0], extrema_arcs[0]);
		// The remaining results (index 2 onwards) should match the results where MaximizeArcs::Off from the next extrema point onwards (after index 2).
		assert!(auto_arcs.iter().skip(2).zip(extrema_arcs.iter().skip(2)).all(|(arc1, arc2)| compare_arcs(*arc1, *arc2)));
	}
}