1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
use super::*;
use crate::utils::{solve_cubic, solve_quadratic, TValue};
use crate::{to_symmetrical_basis_pair, SymmetricalBasis};

use glam::DMat2;
use std::ops::Range;

/// Functionality that solve for various curve information such as derivative, tangent, intersect, etc.
impl Bezier {
	/// Get roots as [[x], [y]]
	#[must_use]
	pub fn roots(self) -> [Vec<f64>; 2] {
		let s_basis = to_symmetrical_basis_pair(self);
		[s_basis.x.roots(), s_basis.y.roots()]
	}

	/// Returns a list of lists of points representing the De Casteljau points for all iterations at the point `t` along the curve using De Casteljau's algorithm.
	/// The `i`th element of the list represents the set of points in the `i`th iteration.
	/// More information on the algorithm can be found in the [De Casteljau section](https://pomax.github.io/bezierinfo/#decasteljau) in Pomax's primer.
	/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#bezier/de-casteljau-points/solo" title="De Casteljau Demo"></iframe>
	pub fn de_casteljau_points(&self, t: TValue) -> Vec<Vec<DVec2>> {
		let t = self.t_value_to_parametric(t);
		let bezier_points = match self.handles {
			BezierHandles::Linear => vec![self.start, self.end],
			BezierHandles::Quadratic { handle } => vec![self.start, handle, self.end],
			BezierHandles::Cubic { handle_start, handle_end } => vec![self.start, handle_start, handle_end, self.end],
		};
		let mut de_casteljau_points = vec![bezier_points];
		let mut current_points = de_casteljau_points.last().unwrap();

		// Iterate until one point is left, that point will be equal to `evaluate(t)`
		while current_points.len() > 1 {
			// Map from every adjacent pair of points to their respective midpoints, which decrements by 1 the number of points for the next iteration
			let next_points: Vec<DVec2> = current_points.as_slice().windows(2).map(|pair| DVec2::lerp(pair[0], pair[1], t)).collect();
			de_casteljau_points.push(next_points);

			current_points = de_casteljau_points.last().unwrap();
		}

		de_casteljau_points
	}

	/// Returns a [Bezier] representing the derivative of the original curve.
	/// - This function returns `None` for a linear segment.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/derivative/solo" title="Derivative Demo"></iframe>
	pub fn derivative(&self) -> Option<Bezier> {
		match self.handles {
			BezierHandles::Linear => None,
			BezierHandles::Quadratic { handle } => {
				let p1_minus_p0 = handle - self.start;
				let p2_minus_p1 = self.end - handle;
				Some(Bezier::from_linear_dvec2(2. * p1_minus_p0, 2. * p2_minus_p1))
			}
			BezierHandles::Cubic { handle_start, handle_end } => {
				let p1_minus_p0 = handle_start - self.start;
				let p2_minus_p1 = handle_end - handle_start;
				let p3_minus_p2 = self.end - handle_end;
				Some(Bezier::from_quadratic_dvec2(3. * p1_minus_p0, 3. * p2_minus_p1, 3. * p3_minus_p2))
			}
		}
	}

	/// Returns the non-normalized vector representing the tangent at the point `t` along the curve.
	pub(crate) fn non_normalized_tangent(&self, t: f64) -> DVec2 {
		match self.handles {
			BezierHandles::Linear => self.end - self.start,
			_ => self.derivative().unwrap().evaluate(TValue::Parametric(t)),
		}
	}

	/// Returns a normalized unit vector representing the tangent at the point `t` along the curve.
	/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#bezier/tangent/solo" title="Tangent Demo"></iframe>
	pub fn tangent(&self, t: TValue) -> DVec2 {
		let t = self.t_value_to_parametric(t);
		let tangent = self.non_normalized_tangent(t);
		if tangent.length() > 0. {
			tangent.normalize()
		} else {
			tangent
		}
	}

	/// Find the `t`-value(s) such that the tangent(s) at `t` pass through the specified point.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/tangents-to-point/solo" title="Tangents to Point Demo"></iframe>
	#[must_use]
	pub fn tangents_to_point(self, point: DVec2) -> Vec<f64> {
		let sbasis: crate::SymmetricalBasisPair = to_symmetrical_basis_pair(self);
		let derivative = sbasis.derivative();
		let cross = (sbasis - point).cross(&derivative);
		SymmetricalBasis::roots(&cross)
	}

	/// Returns a normalized unit vector representing the direction of the normal at the point `t` along the curve.
	/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#bezier/normal/solo" title="Normal Demo"></iframe>
	pub fn normal(&self, t: TValue) -> DVec2 {
		self.tangent(t).perp()
	}

	/// Find the `t`-value(s) such that the normal(s) at `t` pass through the specified point.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/normals-to-point/solo" title="Normals to Point Demo"></iframe>
	#[must_use]
	pub fn normals_to_point(self, point: DVec2) -> Vec<f64> {
		let sbasis = to_symmetrical_basis_pair(self);
		let derivative = sbasis.derivative();
		let cross = (sbasis - point).dot(&derivative);
		SymmetricalBasis::roots(&cross)
	}

	/// Returns the curvature, a scalar value for the derivative at the point `t` along the curve.
	/// Curvature is 1 over the radius of a circle with an equivalent derivative.
	/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#bezier/curvature/solo" title="Curvature Demo"></iframe>
	pub fn curvature(&self, t: TValue) -> f64 {
		let t = self.t_value_to_parametric(t);
		let (d, dd) = match &self.derivative() {
			Some(first_derivative) => match first_derivative.derivative() {
				Some(second_derivative) => (first_derivative.evaluate(TValue::Parametric(t)), second_derivative.evaluate(TValue::Parametric(t))),
				None => (first_derivative.evaluate(TValue::Parametric(t)), first_derivative.end - first_derivative.start),
			},
			None => (self.end - self.start, DVec2::new(0., 0.)),
		};

		let numerator = d.x * dd.y - d.y * dd.x;
		let denominator = (d.x.powf(2.) + d.y.powf(2.)).powf(1.5);
		if denominator.abs() < MAX_ABSOLUTE_DIFFERENCE {
			0.
		} else {
			numerator / denominator
		}
	}

	/// Returns two lists of `t`-values representing the local extrema of the `x` and `y` parametric curves respectively.
	/// The local extrema are defined to be points at which the derivative of the curve is equal to zero.
	fn unrestricted_local_extrema(&self) -> [[Option<f64>; 3]; 2] {
		match self.handles {
			BezierHandles::Linear => [[None; 3]; 2],
			BezierHandles::Quadratic { handle } => {
				let a = handle - self.start;
				let b = self.end - handle;
				let b_minus_a = b - a;
				[utils::solve_linear(b_minus_a.x, a.x), utils::solve_linear(b_minus_a.y, a.y)]
			}
			BezierHandles::Cubic { handle_start, handle_end } => {
				let a = 3. * (-self.start + 3. * handle_start - 3. * handle_end + self.end);
				let b = 6. * (self.start - 2. * handle_start + handle_end);
				let c = 3. * (handle_start - self.start);
				let discriminant = b * b - 4. * a * c;
				let two_times_a = 2. * a;
				[
					utils::solve_quadratic(discriminant.x, two_times_a.x, b.x, c.x),
					utils::solve_quadratic(discriminant.y, two_times_a.y, b.y, c.y),
				]
			}
		}
	}

	/// Returns two lists of `t`-values representing the local extrema of the `x` and `y` parametric curves respectively.
	/// The list of `t`-values returned are filtered such that they fall within the range `[0, 1]`.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/local-extrema/solo" title="Local Extrema Demo"></iframe>
	pub fn local_extrema(&self) -> [impl Iterator<Item = f64>; 2] {
		self.unrestricted_local_extrema().map(|t_values| t_values.into_iter().flatten().filter(|&t| t > 0. && t < 1.))
	}

	/// Return the min and max corners that represent the bounding box of the curve.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/bounding-box/solo" title="Bounding Box Demo"></iframe>
	pub fn bounding_box(&self) -> [DVec2; 2] {
		// Start by taking min/max of endpoints.
		let mut endpoints_min = self.start.min(self.end);
		let mut endpoints_max = self.start.max(self.end);

		// Iterate through extrema points.
		let extrema = self.local_extrema();
		for t_values in extrema {
			for t in t_values {
				let point = self.evaluate(TValue::Parametric(t));
				// Update bounding box if new min/max is found.
				endpoints_min = endpoints_min.min(point);
				endpoints_max = endpoints_max.max(point);
			}
		}

		[endpoints_min, endpoints_max]
	}

	/// Return the min and max corners that represent the bounding box enclosing this Bezier's two anchor points and any handles.
	pub fn bounding_box_of_anchors_and_handles(&self) -> [DVec2; 2] {
		match self.handles {
			BezierHandles::Linear => [self.start.min(self.end), self.start.max(self.end)],
			BezierHandles::Quadratic { handle } => [self.start.min(self.end).min(handle), self.start.max(self.end).max(handle)],
			BezierHandles::Cubic { handle_start, handle_end } => [self.start.min(self.end).min(handle_start).min(handle_end), self.start.max(self.end).max(handle_start).max(handle_end)],
		}
	}

	/// Returns `true` if the bounding box of the bezier is contained entirely within a rectangle defined by its minimum and maximum corners.
	pub fn is_contained_within(&self, min_corner: DVec2, max_corner: DVec2) -> bool {
		let [bounding_box_min, bounding_box_max] = self.bounding_box();
		min_corner.x <= bounding_box_min.x && min_corner.y <= bounding_box_min.y && bounding_box_max.x <= max_corner.x && bounding_box_max.y <= max_corner.y
	}

	/// Returns an `Iterator` containing all possible parametric `t`-values at the given `x`-coordinate.
	pub fn find_tvalues_for_x(&self, x: f64) -> impl Iterator<Item = f64> {
		// Compute the roots of the resulting bezier curve
		match self.handles {
			BezierHandles::Linear => {
				// If the transformed linear bezier is on the x-axis, `a` and `b` will both be zero and `solve_linear` will return no roots
				let a = self.end.x - self.start.x;
				let b = self.start.x - x;
				utils::solve_linear(a, b)
			}
			BezierHandles::Quadratic { handle } => {
				let a = self.start.x - 2. * handle.x + self.end.x;
				let b = 2. * (handle.x - self.start.x);
				let c = self.start.x - x;

				let discriminant = b * b - 4. * a * c;
				let two_times_a = 2. * a;

				utils::solve_quadratic(discriminant, two_times_a, b, c)
			}
			BezierHandles::Cubic { handle_start, handle_end } => {
				let start_x = self.start.x;
				let a = -start_x + 3. * handle_start.x - 3. * handle_end.x + self.end.x;
				let b = 3. * start_x - 6. * handle_start.x + 3. * handle_end.x;
				let c = -3. * start_x + 3. * handle_start.x;
				let d = start_x - x;

				utils::solve_cubic(a, b, c, d)
			}
		}
		.into_iter()
		.flatten()
		.filter(|&t| utils::f64_approximately_in_range(t, 0., 1., MAX_ABSOLUTE_DIFFERENCE))
	}

	// TODO: Use an `impl Iterator` return type instead of a `Vec`
	/// Returns list of `t`-values representing the inflection points of the curve.
	/// The inflection points are defined to be points at which the second derivative of the curve is equal to zero.
	pub fn unrestricted_inflections(&self) -> impl Iterator<Item = f64> {
		match self.handles {
			// There exists no inflection points for linear and quadratic beziers.
			BezierHandles::Linear => [None; 3],
			BezierHandles::Quadratic { .. } => [None; 3],
			BezierHandles::Cubic { .. } => {
				// Axis align the curve.
				let translated_bezier = self.translate(-self.start);
				let angle = translated_bezier.end.angle_between(DVec2::new(1., 0.));
				let rotated_bezier = translated_bezier.rotate(angle);
				if let BezierHandles::Cubic { handle_start, handle_end } = rotated_bezier.handles {
					// These formulas and naming conventions follows https://pomax.github.io/bezierinfo/#inflections
					let a = handle_end.x * handle_start.y;
					let b = rotated_bezier.end.x * handle_start.y;
					let c = handle_start.x * handle_end.y;
					let d = rotated_bezier.end.x * handle_end.y;

					let x = -3. * a + 2. * b + 3. * c - d;
					let y = 3. * a - b - 3. * c;
					let z = c - a;

					let discriminant = y * y - 4. * x * z;
					utils::solve_quadratic(discriminant, 2. * x, y, z)
				} else {
					unreachable!("shouldn't happen")
				}
			}
		}
		.into_iter()
		.flatten()
	}

	/// Returns list of parametric `t`-values representing the inflection points of the curve.
	/// The list of `t`-values returned are filtered such that they fall within the range `[0, 1]`.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/inflections/solo" title="Inflections Demo"></iframe>
	pub fn inflections(&self) -> Vec<f64> {
		self.unrestricted_inflections().filter(|&t| t > 0. && t < 1.).collect::<Vec<f64>>()
	}

	/// Implementation of the algorithm to find curve intersections by iterating on bounding boxes.
	/// - `self_original_t_interval` - Used to identify the `t` values of the original parent of `self` that the current iteration is representing.
	/// - `other_original_t_interval` - Used to identify the `t` values of the original parent of `other` that the current iteration is representing.
	pub(crate) fn intersections_between_subcurves(&self, self_original_t_interval: Range<f64>, other: &Bezier, other_original_t_interval: Range<f64>, error: f64) -> Vec<[f64; 2]> {
		let bounding_box1 = self.bounding_box();
		let bounding_box2 = other.bounding_box();

		// Get the `t` interval of the original parent of `self` and determine the middle `t` value
		let Range { start: self_start_t, end: self_end_t } = self_original_t_interval;
		let self_mid_t = (self_start_t + self_end_t) / 2.;

		// Get the `t` interval of the original parent of `other` and determine the middle `t` value
		let Range {
			start: other_start_t,
			end: other_end_t,
		} = other_original_t_interval;
		let other_mid_t = (other_start_t + other_end_t) / 2.;

		let error_threshold = DVec2::new(error, error);

		// Check if the bounding boxes overlap
		if utils::do_rectangles_overlap(bounding_box1, bounding_box2) {
			// If bounding boxes are within the error threshold (i.e. are small enough), we have found an intersection
			if (bounding_box1[1] - bounding_box1[0]).cmplt(error_threshold).all() && (bounding_box2[1] - bounding_box2[0]).cmplt(error_threshold).all() {
				// Use the middle t value, return the corresponding `t` value for `self` and `other`
				return vec![[self_mid_t, other_mid_t]];
			}

			// Split curves in half and repeat with the combinations of the two halves of each curve
			let [split_1_a, split_1_b] = self.split(TValue::Parametric(0.5));
			let [split_2_a, split_2_b] = other.split(TValue::Parametric(0.5));

			[
				split_1_a.intersections_between_subcurves(self_start_t..self_mid_t, &split_2_a, other_start_t..other_mid_t, error),
				split_1_a.intersections_between_subcurves(self_start_t..self_mid_t, &split_2_b, other_mid_t..other_end_t, error),
				split_1_b.intersections_between_subcurves(self_mid_t..self_end_t, &split_2_a, other_start_t..other_mid_t, error),
				split_1_b.intersections_between_subcurves(self_mid_t..self_end_t, &split_2_b, other_mid_t..other_end_t, error),
			]
			.concat()
		} else {
			vec![]
		}
	}

	// TODO: Use an `impl Iterator` return type instead of a `Vec`
	/// Returns a list of filtered parametric `t` values that correspond to intersection points between the current bezier curve and the provided one
	/// such that the difference between adjacent `t` values in sorted order is greater than some minimum separation value. If the difference
	/// between 2 adjacent `t` values is less than the minimum difference, the filtering takes the larger `t` value and discards the smaller `t` value.
	/// The returned `t` values are with respect to the current bezier, not the provided parameter.
	/// If the provided curve is linear, then zero intersection points will be returned along colinear segments.
	/// - `error` - For intersections where the provided bezier is non-linear, `error` defines the threshold for bounding boxes to be considered an intersection point.
	/// - `minimum_separation` - The minimum difference between adjacent `t` values in sorted order
	/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#bezier/intersect-cubic/solo" title="Intersections Demo"></iframe>
	pub fn intersections(&self, other: &Bezier, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<f64> {
		// TODO: Consider using the `intersections_between_vectors_of_curves` helper function here
		// Otherwise, use bounding box to determine intersections
		let mut intersection_t_values = self.unfiltered_intersections(other, error);
		intersection_t_values.sort_by(|a, b| a.partial_cmp(b).unwrap());

		intersection_t_values.iter().fold(Vec::new(), |mut accumulator, t| {
			if !accumulator.is_empty() && (accumulator.last().unwrap() - t).abs() < minimum_separation.unwrap_or(MIN_SEPARATION_VALUE) {
				accumulator.pop();
			}
			accumulator.push(*t);
			accumulator
		})
	}

	// TODO: Use an `impl Iterator` return type instead of a `Vec`
	/// Returns a list of `t` values that correspond to intersection points between the current bezier curve and the provided one. The returned `t` values are with respect to the current bezier, not the provided parameter.
	/// If the provided curve is linear, then zero intersection points will be returned along colinear segments.
	/// - `error` - For intersections where the provided bezier is non-linear, `error` defines the threshold for bounding boxes to be considered an intersection point.
	fn unfiltered_intersections(&self, other: &Bezier, error: Option<f64>) -> Vec<f64> {
		let error = error.unwrap_or(0.5);
		if other.handles == BezierHandles::Linear {
			// Rotate the bezier and the line by the angle that the line makes with the x axis
			let line_directional_vector = other.end - other.start;
			let angle = line_directional_vector.angle_between(DVec2::new(0., 1.));
			let rotation_matrix = DMat2::from_angle(angle);
			let rotated_bezier = self.apply_transformation(|point| rotation_matrix * point);

			// Translate the bezier such that the line becomes aligned on top of the x-axis
			let vertical_distance = (rotation_matrix * other.start).x;
			let translated_bezier = rotated_bezier.translate(DVec2::new(-vertical_distance, 0.));

			// Compute the roots of the resulting bezier curve
			let list_intersection_t = translated_bezier.find_tvalues_for_x(0.);

			// Calculate line's bounding box
			let [min_corner, max_corner] = other.bounding_box_of_anchors_and_handles();

			return list_intersection_t
				// Accept the t value if it is approximately in [0, 1] and if the corresponding coordinates are within the range of the linear line
				.filter(|&t| utils::dvec2_approximately_in_range(self.unrestricted_parametric_evaluate(t), min_corner, max_corner, MAX_ABSOLUTE_DIFFERENCE).all())
				// Ensure the returned value is within the correct range
				.map(|t| t.clamp(0., 1.))
				.collect::<Vec<f64>>();
		}

		// TODO: Consider using the `intersections_between_vectors_of_curves` helper function here
		// Otherwise, use bounding box to determine intersections
		self.intersections_between_subcurves(0. ..1., other, 0. ..1., error).iter().map(|t_values| t_values[0]).collect()
	}

	/// Returns a list of `t` values that correspond to points on this Bezier segment where they intersect with the given line. (`direction_vector` does not need to be normalized.)
	/// If this needs to be called frequently with a line of the same rotation angle, consider instead using [`line_test_crossings_prerotated`] and moving this function's setup code into your own logic before the repeated call.
	pub fn line_test_crossings(&self, point_on_line: DVec2, direction_vector: DVec2) -> impl Iterator<Item = f64> + '_ {
		// Rotate the bezier and the line by the angle that the line makes with the x axis
		let angle = direction_vector.angle_between(DVec2::new(0., 1.));
		let rotation_matrix = DMat2::from_angle(angle);
		let rotated_bezier = self.apply_transformation(|point| rotation_matrix * point);

		self.line_test_crossings_prerotated(point_on_line, rotation_matrix, rotated_bezier)
	}

	/// Returns a list of `t` values that correspond to points on this Bezier segment where they intersect with the given infinite line.
	/// This version of the function is for better performance when calling it frequently without needing to change the rotation between each call.
	/// If that isn't important, use [`line_test_crossings`] which wraps this and provides an easier interface by taking a line rotation vector.
	/// Instead, this version requires a rotation matrix for the line's rotation and a version of this Bezier segment that has had its rotation already applied.
	pub fn line_test_crossings_prerotated(&self, point_on_line: DVec2, rotation_matrix: DMat2, rotated_bezier: Self) -> impl Iterator<Item = f64> + '_ {
		// Translate the bezier such that the line becomes aligned on top of the x-axis
		let vertical_distance = (rotation_matrix.x_axis.x * point_on_line.x) + (rotation_matrix.y_axis.x * point_on_line.y);
		let translated_bezier = rotated_bezier.translate(DVec2::new(-vertical_distance, 0.));

		// Compute the roots of the resulting bezier curve
		translated_bezier.find_tvalues_for_x(0.)
	}

	/// Returns a list of `t` values that correspond to points on this Bezier segment where they intersect with the given ray. (`ray_direction` does not need to be normalized.)
	/// If this needs to be called frequently with a ray of the same rotation angle, consider instead using [`ray_test_crossings_prerotated`] and moving this function's setup code into your own logic before the repeated call.
	pub fn ray_test_crossings(&self, ray_start: DVec2, ray_direction: DVec2) -> impl Iterator<Item = f64> + '_ {
		// Rotate the bezier and the line by the angle that the line makes with the x axis
		let angle = ray_direction.angle_between(DVec2::new(0., 1.));
		let rotation_matrix = DMat2::from_angle(angle);
		let rotated_bezier = self.apply_transformation(|point| rotation_matrix * point);

		self.ray_test_crossings_prerotated(ray_start, rotation_matrix, rotated_bezier)
	}

	/// Returns a list of `t` values that correspond to points on this Bezier segment where they intersect with the given infinite ray.
	/// This version of the function is for better performance when calling it frequently without needing to change the rotation between each call.
	/// If that isn't important, use [`ray_test_crossings`] which wraps this and provides an easier interface by taking a ray direction vector.
	/// Instead, this version requires a rotation matrix for the ray's rotation and a version of this Bezier segment that has had its rotation already applied.
	pub fn ray_test_crossings_prerotated(&self, ray_start: DVec2, rotation_matrix: DMat2, rotated_bezier: Self) -> impl Iterator<Item = f64> + '_ {
		// Intersection t-values include those beyond the [0-1] range where the segment's ends extend through the X-axis
		let intersection_t_values_on_rotated_bezier = self.line_test_crossings_prerotated(ray_start, rotation_matrix, rotated_bezier);

		intersection_t_values_on_rotated_bezier
			// Accept the t value if it is approximately in [0, 1] and if the corresponding coordinates are within the range of the linear line
			.filter(move |&t| {
				let point = self.unrestricted_parametric_evaluate(t);
				// Ensure the returned value is within the correct range
				let in_bounds = point.cmpge(ray_start) | utils::dvec2_compare(point, ray_start, MAX_ABSOLUTE_DIFFERENCE);
				in_bounds.x && in_bounds.y
			})
	}

	/// Helper function to compute intersections between lists of subcurves.
	/// This function uses the algorithm implemented in `intersections_between_subcurves`.
	fn intersections_between_vectors_of_curves(subcurves1: &[(Bezier, Range<f64>)], subcurves2: &[(Bezier, Range<f64>)], error: f64) -> Vec<[f64; 2]> {
		let segment_pairs = subcurves1.iter().flat_map(move |(curve1, curve1_t_pair)| {
			subcurves2
				.iter()
				.filter_map(move |(curve2, curve2_t_pair)| utils::do_rectangles_overlap(curve1.bounding_box(), curve2.bounding_box()).then_some((curve1, curve1_t_pair, curve2, curve2_t_pair)))
		});
		segment_pairs
			.flat_map(|(curve1, curve1_t_pair, curve2, curve2_t_pair)| curve1.intersections_between_subcurves(curve1_t_pair.clone(), curve2, curve2_t_pair.clone(), error))
			.collect::<Vec<[f64; 2]>>()
	}

	// TODO: Use an `impl Iterator` return type instead of a `Vec`
	/// Returns a list of parametric `t` values that correspond to the self intersection points of the current bezier curve. For each intersection point, the returned `t` value is the smaller of the two that correspond to the point.
	/// - `error` - For intersections with non-linear beziers, `error` defines the threshold for bounding boxes to be considered an intersection point.
	/// <iframe frameBorder="0" width="100%" height="325px" src="https://graphite.rs/libraries/bezier-rs#bezier/intersect-self/solo" title="Self Intersection Demo"></iframe>
	pub fn self_intersections(&self, error: Option<f64>) -> Vec<[f64; 2]> {
		if self.handles == BezierHandles::Linear || matches!(self.handles, BezierHandles::Quadratic { .. }) {
			return vec![];
		}

		let error = error.unwrap_or(0.5);

		// Get 2 copies of the reduced curves
		let (self1, self1_t_values) = self.reduced_curves_and_t_values(None);
		let (self2, self2_t_values) = (self1.clone(), self1_t_values.clone());
		let num_curves = self1.len();

		// Adjacent reduced curves cannot intersect
		if num_curves <= 2 {
			return vec![];
		}

		// Create iterators that combine a subcurve with the `t` value pair that it was trimmed with
		let combined_iterator1 = self1.into_iter().zip(self1_t_values.iter().map(|t_pair| Range { start: t_pair[0], end: t_pair[1] }));
		// Second one needs to be a list because Iterator does not implement copy
		let combined_list2: Vec<(Bezier, Range<f64>)> = self2.into_iter().zip(self2_t_values.iter().map(|t_pair| Range { start: t_pair[0], end: t_pair[1] })).collect();

		// For each curve, look for intersections with every curve that is at least 2 indices away
		combined_iterator1
			.take(num_curves - 2)
			.enumerate()
			.flat_map(|(index, (subcurve, t_pair))| Bezier::intersections_between_vectors_of_curves(&[(subcurve, t_pair)], &combined_list2[index + 2..], error))
			.collect()
	}

	/// Returns a list of parametric `t` values that correspond to the intersection points between the curve and a rectangle defined by opposite corners.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/intersect-rectangle/solo" title="Intersection (Rectangle) Demo"></iframe>
	pub fn rectangle_intersections(&self, corner1: DVec2, corner2: DVec2) -> Vec<f64> {
		[
			Bezier::from_linear_coordinates(corner1.x, corner1.y, corner2.x, corner1.y),
			Bezier::from_linear_coordinates(corner2.x, corner1.y, corner2.x, corner2.y),
			Bezier::from_linear_coordinates(corner2.x, corner2.y, corner1.x, corner2.y),
			Bezier::from_linear_coordinates(corner1.x, corner2.y, corner1.x, corner1.y),
		]
		.iter()
		.flat_map(|bezier| self.intersections(bezier, None, None))
		.collect()
	}

	/// Returns a cubic bezier which joins this with the provided bezier curve.
	/// The resulting path formed by the Bezier curves is continuous up to the first derivative.
	/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/join/solo" title="Join Demo"></iframe>
	pub fn join(&self, other: &Bezier) -> Bezier {
		let handle1 = self.non_normalized_tangent(1.) / 3. + self.end;
		let handle2 = other.start - other.non_normalized_tangent(0.) / 3.;
		Bezier::from_cubic_dvec2(self.end, handle1, handle2, other.start)
	}

	/// Compute the winding order (number of times crossing an infinate line to the left of the point)
	///
	/// Assumes curve is split at the extrema.
	fn pre_split_winding_number(&self, target_point: DVec2) -> i32 {
		// Clockwise is -1, anticlockwise is +1 (with +y as up)
		// Looking only to the left (-x) of the target_point
		let resulting_sign = if self.end.y > self.start.y {
			if target_point.y < self.start.y || target_point.y >= self.end.y {
				return 0;
			}
			-1
		} else if self.end.y < self.start.y {
			if target_point.y < self.end.y || target_point.y >= self.start.y {
				return 0;
			}
			1
		} else {
			return 0;
		};
		match &self.handles {
			BezierHandles::Linear => {
				if target_point.x < self.start.x.min(self.end.x) {
					return 0;
				}
				if target_point.x >= self.start.x.max(self.end.x) {
					return resulting_sign;
				}
				// line equation ax + by = c
				let a = self.end.y - self.start.y;
				let b = self.start.x - self.end.x;
				let c = a * self.start.x + b * self.start.y;
				if (a * target_point.x + b * target_point.y - c) * (resulting_sign as f64) <= 0. {
					resulting_sign
				} else {
					0
				}
			}
			BezierHandles::Quadratic { handle: p1 } => {
				if target_point.x < self.start.x.min(self.end.x).min(p1.x) {
					return 0;
				}
				if target_point.x >= self.start.x.max(self.end.x).max(p1.x) {
					return resulting_sign;
				}
				let a = self.end.y - 2. * p1.y + self.start.y;
				let b = 2. * (p1.y - self.start.y);
				let c = self.start.y - target_point.y;

				let discriminant = b * b - 4. * a * c;
				let two_times_a = 2. * a;
				for t in solve_quadratic(discriminant, two_times_a, b, c).into_iter().flatten() {
					if (0.0..=1.).contains(&t) {
						let x = self.evaluate(TValue::Parametric(t)).x;
						if target_point.x >= x {
							return resulting_sign;
						} else {
							return 0;
						}
					}
				}
				0
			}
			BezierHandles::Cubic { handle_start: p1, handle_end: p2 } => {
				if target_point.x < self.start.x.min(self.end.x).min(p1.x).min(p2.x) {
					return 0;
				}
				if target_point.x >= self.start.x.max(self.end.x).max(p1.x).max(p2.x) {
					return resulting_sign;
				}
				let a = self.end.y - 3. * p2.y + 3. * p1.y - self.start.y;
				let b = 3. * (p2.y - 2. * p1.y + self.start.y);
				let c = 3. * (p1.y - self.start.y);
				let d = self.start.y - target_point.y;
				for t in solve_cubic(a, b, c, d).into_iter().flatten() {
					if (0.0..=1.).contains(&t) {
						let x = self.evaluate(TValue::Parametric(t)).x;
						if target_point.x >= x {
							return resulting_sign;
						} else {
							return 0;
						}
					}
				}
				0
			}
		}
	}

	/// Compute the winding number contribution of a single segment.
	///
	/// Cast a ray to the left and count intersections.
	pub fn winding(&self, target_point: DVec2) -> i32 {
		let extrema = self.get_extrema_t_list();
		extrema
			.windows(2)
			.map(|t| self.trim(TValue::Parametric(t[0]), TValue::Parametric(t[1])).pre_split_winding_number(target_point))
			.sum()
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::compare::{compare_f64s, compare_points, compare_vec_of_points};

	#[test]
	fn test_de_casteljau_points() {
		let bezier = Bezier::from_cubic_coordinates(0., 0., 0., 100., 100., 100., 100., 0.);
		let de_casteljau_points = bezier.de_casteljau_points(TValue::Parametric(0.5));
		let expected_de_casteljau_points = vec![
			vec![DVec2::new(0., 0.), DVec2::new(0., 100.), DVec2::new(100., 100.), DVec2::new(100., 0.)],
			vec![DVec2::new(0., 50.), DVec2::new(50., 100.), DVec2::new(100., 50.)],
			vec![DVec2::new(25., 75.), DVec2::new(75., 75.)],
			vec![DVec2::new(50., 75.)],
		];
		assert_eq!(&de_casteljau_points, &expected_de_casteljau_points);

		assert_eq!(expected_de_casteljau_points[3][0], bezier.evaluate(TValue::Parametric(0.5)));
	}

	#[test]
	fn test_derivative() {
		// Test derivatives of each Bezier curve type
		let p1 = DVec2::new(10., 10.);
		let p2 = DVec2::new(40., 30.);
		let p3 = DVec2::new(60., 60.);
		let p4 = DVec2::new(70., 100.);

		let linear = Bezier::from_linear_dvec2(p1, p2);
		assert!(linear.derivative().is_none());

		let quadratic = Bezier::from_quadratic_dvec2(p1, p2, p3);
		let derivative_quadratic = quadratic.derivative().unwrap();
		assert_eq!(derivative_quadratic, Bezier::from_linear_coordinates(60., 40., 40., 60.));

		let cubic = Bezier::from_cubic_dvec2(p1, p2, p3, p4);
		let derivative_cubic = cubic.derivative().unwrap();
		assert_eq!(derivative_cubic, Bezier::from_quadratic_coordinates(90., 60., 60., 90., 30., 120.));

		// Cases where the all manipulator points are the same
		let quadratic_point = Bezier::from_quadratic_dvec2(p1, p1, p1);
		assert_eq!(quadratic_point.derivative().unwrap(), Bezier::from_linear_dvec2(DVec2::ZERO, DVec2::ZERO));

		let cubic_point = Bezier::from_cubic_dvec2(p1, p1, p1, p1);
		assert_eq!(cubic_point.derivative().unwrap(), Bezier::from_quadratic_dvec2(DVec2::ZERO, DVec2::ZERO, DVec2::ZERO));
	}

	#[test]
	fn test_tangent() {
		// Test tangents at start and end points of each Bezier curve type
		let p1 = DVec2::new(10., 10.);
		let p2 = DVec2::new(40., 30.);
		let p3 = DVec2::new(60., 60.);
		let p4 = DVec2::new(70., 100.);

		let linear = Bezier::from_linear_dvec2(p1, p2);
		let unit_slope = DVec2::new(30., 20.).normalize();
		assert_eq!(linear.tangent(TValue::Parametric(0.)), unit_slope);
		assert_eq!(linear.tangent(TValue::Parametric(1.)), unit_slope);

		let quadratic = Bezier::from_quadratic_dvec2(p1, p2, p3);
		assert_eq!(quadratic.tangent(TValue::Parametric(0.)), DVec2::new(60., 40.).normalize());
		assert_eq!(quadratic.tangent(TValue::Parametric(1.)), DVec2::new(40., 60.).normalize());

		let cubic = Bezier::from_cubic_dvec2(p1, p2, p3, p4);
		assert_eq!(cubic.tangent(TValue::Parametric(0.)), DVec2::new(90., 60.).normalize());
		assert_eq!(cubic.tangent(TValue::Parametric(1.)), DVec2::new(30., 120.).normalize());
	}

	#[test]
	fn tangent_at_point() {
		let validate = |bz: Bezier, p: DVec2| {
			let solutions = bz.tangents_to_point(p);
			assert_ne!(solutions.len(), 0);
			for t in solutions {
				let pos = bz.evaluate(TValue::Parametric(t));
				let expected_tangent = (pos - p).normalize();
				let tangent = bz.tangent(TValue::Parametric(t));
				assert!(expected_tangent.perp_dot(tangent).abs() < 0.2, "Expected tangent {expected_tangent} found {tangent} pos {pos}")
			}
		};
		let bz = Bezier::from_quadratic_coordinates(55., 50., 165., 30., 185., 170.);
		let p = DVec2::new(193., 83.);
		validate(bz, p);

		let bz = Bezier::from_cubic_coordinates(55., 30., 18., 139., 175., 30., 185., 160.);
		let p = DVec2::new(127., 121.);
		validate(bz, p);
	}

	#[test]
	fn test_normal() {
		// Test normals at start and end points of each Bezier curve type
		let p1 = DVec2::new(10., 10.);
		let p2 = DVec2::new(40., 30.);
		let p3 = DVec2::new(60., 60.);
		let p4 = DVec2::new(70., 100.);

		let linear = Bezier::from_linear_dvec2(p1, p2);
		let unit_slope = DVec2::new(-20., 30.).normalize();
		assert_eq!(linear.normal(TValue::Parametric(0.)), unit_slope);
		assert_eq!(linear.normal(TValue::Parametric(1.)), unit_slope);

		let quadratic = Bezier::from_quadratic_dvec2(p1, p2, p3);
		assert_eq!(quadratic.normal(TValue::Parametric(0.)), DVec2::new(-40., 60.).normalize());
		assert_eq!(quadratic.normal(TValue::Parametric(1.)), DVec2::new(-60., 40.).normalize());

		let cubic = Bezier::from_cubic_dvec2(p1, p2, p3, p4);
		assert_eq!(cubic.normal(TValue::Parametric(0.)), DVec2::new(-60., 90.).normalize());
		assert_eq!(cubic.normal(TValue::Parametric(1.)), DVec2::new(-120., 30.).normalize());
	}

	#[test]
	fn normal_at_point() {
		let validate = |bz: Bezier, p: DVec2| {
			let solutions = bz.normals_to_point(p);
			assert_ne!(solutions.len(), 0);
			for t in solutions {
				let pos = bz.evaluate(TValue::Parametric(t));
				let expected_normal = (pos - p).normalize();
				let normal = bz.normal(TValue::Parametric(t));
				assert!(expected_normal.perp_dot(normal).abs() < 0.2, "Expected normal {expected_normal} found {normal} pos {pos}")
			}
		};

		let bz = Bezier::from_linear_coordinates(50., 50., 100., 100.);
		let p = DVec2::new(100., 50.);
		validate(bz, p);

		let bz = Bezier::from_quadratic_coordinates(55., 50., 165., 30., 185., 170.);
		let p = DVec2::new(193., 83.);
		validate(bz, p);

		let bz = Bezier::from_cubic_coordinates(55., 30., 18., 139., 175., 30., 185., 160.);
		let p = DVec2::new(127., 121.);
		validate(bz, p);

		let bz = Bezier::from_cubic_coordinates(55.0, 30.0, 85.0, 140.0, 175.0, 30.0, 185.0, 160.0);
		let p = DVec2::new(17., 172.);
		validate(bz, p);
	}

	#[test]
	fn test_curvature() {
		let p1 = DVec2::new(10., 10.);
		let p2 = DVec2::new(50., 10.);
		let p3 = DVec2::new(50., 50.);
		let p4 = DVec2::new(50., 10.);

		let linear = Bezier::from_linear_dvec2(p1, p2);
		assert_eq!(linear.curvature(TValue::Parametric(0.)), 0.);
		assert_eq!(linear.curvature(TValue::Parametric(0.5)), 0.);
		assert_eq!(linear.curvature(TValue::Parametric(1.)), 0.);

		let quadratic = Bezier::from_quadratic_dvec2(p1, p2, p3);
		assert!(compare_f64s(quadratic.curvature(TValue::Parametric(0.)), 0.0125));
		assert!(compare_f64s(quadratic.curvature(TValue::Parametric(0.5)), 0.035355));
		assert!(compare_f64s(quadratic.curvature(TValue::Parametric(1.)), 0.0125));

		let cubic = Bezier::from_cubic_dvec2(p1, p2, p3, p4);
		assert!(compare_f64s(cubic.curvature(TValue::Parametric(0.)), 0.016667));
		assert!(compare_f64s(cubic.curvature(TValue::Parametric(0.5)), 0.));
		assert!(compare_f64s(cubic.curvature(TValue::Parametric(1.)), 0.));

		// The curvature at an inflection point is zero
		let inflection_curve = Bezier::from_cubic_coordinates(30., 30., 30., 150., 150., 30., 150., 150.);
		let inflections = inflection_curve.inflections();
		assert_eq!(inflection_curve.curvature(TValue::Parametric(inflections[0])), 0.);
	}

	#[test]
	fn test_extrema_linear() {
		// Linear bezier cannot have extrema
		let line = Bezier::from_linear_dvec2(DVec2::new(10., 10.), DVec2::new(50., 50.));
		let [x_extrema, y_extrema] = line.local_extrema();
		assert_eq!(y_extrema.count(), 0);
		assert_eq!(x_extrema.count(), 0);
	}

	#[test]
	fn test_extrema_quadratic() {
		// Test with no x-extrema, no y-extrema
		let bezier1 = Bezier::from_quadratic_coordinates(40., 35., 149., 54., 155., 170.);
		let [x_extrema1, y_extrema1] = bezier1.local_extrema();
		assert_eq!(x_extrema1.count(), 0);
		assert_eq!(y_extrema1.count(), 0);

		// Test with 1 x-extrema, no y-extrema
		let bezier2 = Bezier::from_quadratic_coordinates(45., 30., 170., 90., 45., 150.);
		let [x_extrema2, y_extrema2] = bezier2.local_extrema();
		assert_eq!(x_extrema2.count(), 1);
		assert_eq!(y_extrema2.count(), 0);

		// Test with no x-extrema, 1 y-extrema
		let bezier3 = Bezier::from_quadratic_coordinates(30., 130., 100., 25., 150., 130.);
		let [x_extrema3, y_extrema3] = bezier3.local_extrema();
		assert_eq!(x_extrema3.count(), 0);
		assert_eq!(y_extrema3.count(), 1);

		// Test with 1 x-extrema, 1 y-extrema
		let bezier4 = Bezier::from_quadratic_coordinates(50., 70., 170., 35., 60., 150.);
		let [x_extrema4, y_extrema4] = bezier4.local_extrema();
		assert_eq!(x_extrema4.count(), 1);
		assert_eq!(y_extrema4.count(), 1);
	}

	#[test]
	fn test_extrema_cubic() {
		// 0 x-extrema, 0 y-extrema
		let bezier1 = Bezier::from_cubic_coordinates(100., 105., 250., 250., 110., 150., 260., 260.);
		let [x_extrema1, y_extrema1] = bezier1.local_extrema();
		assert_eq!(x_extrema1.count(), 0);
		assert_eq!(y_extrema1.count(), 0);

		// 1 x-extrema, 0 y-extrema
		let bezier2 = Bezier::from_cubic_coordinates(55., 145., 40., 40., 110., 110., 180., 40.);
		let [x_extrema2, y_extrema2] = bezier2.local_extrema();
		assert_eq!(x_extrema2.count(), 1);
		assert_eq!(y_extrema2.count(), 0);

		// 1 x-extrema, 1 y-extrema
		let bezier3 = Bezier::from_cubic_coordinates(100., 105., 170., 10., 25., 20., 20., 120.);
		let [x_extrema3, y_extrema3] = bezier3.local_extrema();
		assert_eq!(x_extrema3.count(), 1);
		assert_eq!(y_extrema3.count(), 1);

		// 1 x-extrema, 2 y-extrema
		let bezier4 = Bezier::from_cubic_coordinates(50., 90., 120., 16., 150., 190., 45., 150.);
		let [x_extrema4, y_extrema4] = bezier4.local_extrema();
		assert_eq!(x_extrema4.count(), 1);
		assert_eq!(y_extrema4.count(), 2);

		// 2 x-extrema, 0 y-extrema
		let bezier5 = Bezier::from_cubic_coordinates(40., 170., 150., 160., 10., 10., 170., 10.);
		let [x_extrema5, y_extrema5] = bezier5.local_extrema();
		assert_eq!(x_extrema5.count(), 2);
		assert_eq!(y_extrema5.count(), 0);

		// 2 x-extrema, 1 y-extrema
		let bezier6 = Bezier::from_cubic_coordinates(40., 170., 150., 160., 10., 10., 160., 45.);
		let [x_extrema6, y_extrema6] = bezier6.local_extrema();
		assert_eq!(x_extrema6.count(), 2);
		assert_eq!(y_extrema6.count(), 1);

		// 2 x-extrema, 2 y-extrema
		let bezier7 = Bezier::from_cubic_coordinates(46., 60., 140., 10., 50., 160., 120., 120.);
		let [x_extrema7, y_extrema7] = bezier7.local_extrema();
		assert_eq!(x_extrema7.count(), 2);
		assert_eq!(y_extrema7.count(), 2);
	}

	#[test]
	fn test_bounding_box() {
		// Case where the start and end points dictate the bounding box
		let bezier_simple = Bezier::from_linear_coordinates(0., 0., 10., 10.);
		assert_eq!(bezier_simple.bounding_box(), [DVec2::new(0., 0.), DVec2::new(10., 10.)]);

		// Case where the curve's extrema dictate the bounding box
		let bezier_complex = Bezier::from_cubic_coordinates(90., 70., 25., 25., 175., 175., 110., 130.);
		assert!(compare_vec_of_points(
			bezier_complex.bounding_box().to_vec(),
			vec![DVec2::new(73.2774, 61.4755), DVec2::new(126.7226, 138.5245)],
			1e-3
		));
	}

	#[test]
	fn test_find_tvalues_for_x() {
		struct Assertion {
			bezier: Bezier,
			x: f64,
			ys: &'static [f64],
		}

		let assertions = [
			Assertion {
				bezier: Bezier::from_linear_coordinates(0., 0., 20., 10.),
				x: 5.,
				ys: &[2.5],
			},
			Assertion {
				bezier: Bezier::from_quadratic_coordinates(0., 0., 10., 5., 20., 10.),
				x: 5.,
				ys: &[2.5],
			},
			Assertion {
				bezier: Bezier::from_cubic_coordinates(0., 0., 10., 5., 10., 5., 20., 10.),
				x: 5.,
				ys: &[2.5],
			},
			Assertion {
				bezier: Bezier::from_cubic_coordinates(90., 70., 25., 25., 175., 175., 110., 130.),
				x: 100.,
				ys: &[100.],
			},
			Assertion {
				bezier: Bezier::from_cubic_coordinates(90., 70., 25., 25., 175., 175., 110., 130.),
				x: 80.,
				ys: &[63.62683, 74.53867],
			},
			Assertion {
				bezier: Bezier::from_cubic_coordinates(110., 70., 25., 25., 175., 175., 90., 130.),
				x: 100.,
				ys: &[65.11345, 100., 134.88655],
			},
		];

		for Assertion { bezier, x, ys } in assertions {
			let mut got: Vec<f64> = bezier
				.find_tvalues_for_x(x)
				.map(|t| bezier.evaluate(TValue::Parametric(t)))
				.inspect(|p| assert!((p.x - x).abs() < 1e-4, "wrong x-coordinate, got {} expected {x}", p.x))
				.map(|p| p.y)
				.collect();
			assert_eq!(got.len(), ys.len());
			got.sort_by(f64::total_cmp);
			got.into_iter()
				.zip(ys)
				.for_each(|(got, &expected)| assert!((got - expected).abs() < 1e-4, "wrong y-coordinate, got {got} expected {expected}"));
		}
	}

	#[test]
	fn test_inflections() {
		let bezier = Bezier::from_cubic_coordinates(30., 30., 30., 150., 150., 30., 150., 150.);
		let inflections = bezier.inflections();
		assert_eq!(inflections.len(), 1);
		assert_eq!(inflections[0], 0.5);
	}

	#[test]
	fn test_intersect_line_segment_linear() {
		let p1 = DVec2::new(30., 60.);
		let p2 = DVec2::new(140., 120.);

		// Intersection at edge of curve
		let bezier = Bezier::from_linear_dvec2(p1, p2);
		let line1 = Bezier::from_linear_coordinates(20., 60., 70., 60.);
		let intersections1 = bezier.intersections(&line1, None, None);
		assert!(intersections1.len() == 1);
		assert!(compare_points(bezier.evaluate(TValue::Parametric(intersections1[0])), DVec2::new(30., 60.)));

		// Intersection in the middle of curve
		let line2 = Bezier::from_linear_coordinates(150., 150., 30., 30.);
		let intersections2 = bezier.intersections(&line2, None, None);
		assert!(compare_points(bezier.evaluate(TValue::Parametric(intersections2[0])), DVec2::new(96., 96.)));
	}

	#[test]
	fn test_intersect_line_segment_quadratic() {
		let p1 = DVec2::new(30., 50.);
		let p2 = DVec2::new(140., 30.);
		let p3 = DVec2::new(160., 170.);

		// Intersection at edge of curve
		let bezier = Bezier::from_quadratic_dvec2(p1, p2, p3);
		let line1 = Bezier::from_linear_coordinates(20., 50., 40., 50.);
		let intersections1 = bezier.intersections(&line1, None, None);
		assert!(intersections1.len() == 1);
		assert!(compare_points(bezier.evaluate(TValue::Parametric(intersections1[0])), p1));

		// Intersection in the middle of curve
		let line2 = Bezier::from_linear_coordinates(150., 150., 30., 30.);
		let intersections2 = bezier.intersections(&line2, None, None);
		assert!(compare_points(bezier.evaluate(TValue::Parametric(intersections2[0])), DVec2::new(47.77355, 47.77354)));
	}

	#[test]
	fn test_intersect_line_segment_cubic() {
		let p1 = DVec2::new(30., 30.);
		let p2 = DVec2::new(60., 140.);
		let p3 = DVec2::new(150., 30.);
		let p4 = DVec2::new(160., 160.);

		let bezier = Bezier::from_cubic_dvec2(p1, p2, p3, p4);
		// Intersection at edge of curve, Discriminant > 0
		let line1 = Bezier::from_linear_coordinates(20., 30., 40., 30.);
		let intersections1 = bezier.intersections(&line1, None, None);
		assert!(intersections1.len() == 1);
		assert!(compare_points(bezier.evaluate(TValue::Parametric(intersections1[0])), p1));

		// Intersection at edge and in middle of curve, Discriminant < 0
		let line2 = Bezier::from_linear_coordinates(150., 150., 30., 30.);
		let intersections2 = bezier.intersections(&line2, None, None);
		assert!(intersections2.len() == 2);
		assert!(compare_points(bezier.evaluate(TValue::Parametric(intersections2[0])), p1));
		assert!(compare_points(bezier.evaluate(TValue::Parametric(intersections2[1])), DVec2::new(85.84, 85.84)));
	}

	#[test]
	fn test_intersect_curve_cubic_anchor_handle_overlap() {
		// M31 94 C40 40 107 107 106 106

		let p1 = DVec2::new(31., 94.);
		let p2 = DVec2::new(40., 40.);
		let p3 = DVec2::new(107., 107.);
		let p4 = DVec2::new(106., 106.);
		let bezier = Bezier::from_cubic_dvec2(p1, p2, p3, p4);

		let line = Bezier::from_linear_coordinates(150., 150., 20., 20.);
		let intersections = bezier.intersections(&line, None, None);

		assert_eq!(intersections.len(), 1);
		assert!(compare_points(bezier.evaluate(TValue::Parametric(intersections[0])), p4));
	}

	#[test]
	fn test_intersect_curve_cubic_edge_case() {
		// M34 107 C40 40 120 120 102 29

		let p1 = DVec2::new(34., 107.);
		let p2 = DVec2::new(40., 40.);
		let p3 = DVec2::new(120., 120.);
		let p4 = DVec2::new(102., 29.);
		let bezier = Bezier::from_cubic_dvec2(p1, p2, p3, p4);

		let line = Bezier::from_linear_coordinates(150., 150., 20., 20.);
		let intersections = bezier.intersections(&line, None, None);

		assert_eq!(intersections.len(), 1);
	}

	#[test]
	fn test_intersect_curve() {
		let bezier1 = Bezier::from_cubic_coordinates(30., 30., 60., 140., 150., 30., 160., 160.);
		let bezier2 = Bezier::from_quadratic_coordinates(175., 140., 20., 20., 120., 20.);

		let intersections1 = bezier1.intersections(&bezier2, None, None);
		let intersections2 = bezier2.intersections(&bezier1, None, None);

		let intersections1_points: Vec<DVec2> = intersections1.iter().map(|&t| bezier1.evaluate(TValue::Parametric(t))).collect();
		let intersections2_points: Vec<DVec2> = intersections2.iter().map(|&t| bezier2.evaluate(TValue::Parametric(t))).rev().collect();

		assert!(compare_vec_of_points(intersections1_points, intersections2_points, 2.));
	}

	#[test]
	fn test_intersect_with_self() {
		let bezier = Bezier::from_cubic_coordinates(160., 180., 170., 10., 30., 90., 180., 140.);
		let intersections = bezier.self_intersections(Some(0.5));
		assert!(compare_vec_of_points(
			intersections.iter().map(|&t| bezier.evaluate(TValue::Parametric(t[0]))).collect(),
			intersections.iter().map(|&t| bezier.evaluate(TValue::Parametric(t[1]))).collect(),
			2.
		));
		assert!(Bezier::from_linear_coordinates(160., 180., 170., 10.).self_intersections(None).is_empty());
		assert!(Bezier::from_quadratic_coordinates(160., 180., 170., 10., 30., 90.).self_intersections(None).is_empty());
	}
}