1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
mod graph_runner;
mod render_device;

use bevy_derive::{Deref, DerefMut};
use bevy_utils::tracing::{error, info, info_span};
pub use graph_runner::*;
pub use render_device::*;

use crate::{
    render_graph::RenderGraph,
    render_phase::TrackedRenderPass,
    render_resource::RenderPassDescriptor,
    settings::{WgpuSettings, WgpuSettingsPriority},
    view::{ExtractedWindows, ViewTarget},
};
use bevy_ecs::prelude::*;
use bevy_time::TimeSender;
use bevy_utils::Instant;
use std::sync::Arc;
use wgpu::{
    Adapter, AdapterInfo, CommandBuffer, CommandEncoder, Instance, Queue, RequestAdapterOptions,
};

/// Updates the [`RenderGraph`] with all of its nodes and then runs it to render the entire frame.
pub fn render_system(world: &mut World) {
    world.resource_scope(|world, mut graph: Mut<RenderGraph>| {
        graph.update(world);
    });
    let graph = world.resource::<RenderGraph>();
    let render_device = world.resource::<RenderDevice>();
    let render_queue = world.resource::<RenderQueue>();

    if let Err(e) = RenderGraphRunner::run(
        graph,
        render_device.clone(), // TODO: is this clone really necessary?
        &render_queue.0,
        world,
    ) {
        error!("Error running render graph:");
        {
            let mut src: &dyn std::error::Error = &e;
            loop {
                error!("> {}", src);
                match src.source() {
                    Some(s) => src = s,
                    None => break,
                }
            }
        }

        panic!("Error running render graph: {e}");
    }

    {
        let _span = info_span!("present_frames").entered();

        // Remove ViewTarget components to ensure swap chain TextureViews are dropped.
        // If all TextureViews aren't dropped before present, acquiring the next swap chain texture will fail.
        let view_entities = world
            .query_filtered::<Entity, With<ViewTarget>>()
            .iter(world)
            .collect::<Vec<_>>();
        for view_entity in view_entities {
            world.entity_mut(view_entity).remove::<ViewTarget>();
        }

        let mut windows = world.resource_mut::<ExtractedWindows>();
        for window in windows.values_mut() {
            if let Some(texture_view) = window.swap_chain_texture.take() {
                if let Some(surface_texture) = texture_view.take_surface_texture() {
                    surface_texture.present();
                }
            }
        }

        #[cfg(feature = "tracing-tracy")]
        bevy_utils::tracing::event!(
            bevy_utils::tracing::Level::INFO,
            message = "finished frame",
            tracy.frame_mark = true
        );
    }

    // update the time and send it to the app world
    let time_sender = world.resource::<TimeSender>();
    time_sender.0.try_send(Instant::now()).expect(
        "The TimeSender channel should always be empty during render. You might need to add the bevy::core::time_system to your app.",
    );
}

/// This queue is used to enqueue tasks for the GPU to execute asynchronously.
#[derive(Resource, Clone, Deref, DerefMut)]
pub struct RenderQueue(pub Arc<Queue>);

/// The handle to the physical device being used for rendering.
/// See [`wgpu::Adapter`] for more info.
#[derive(Resource, Clone, Debug, Deref, DerefMut)]
pub struct RenderAdapter(pub Arc<Adapter>);

/// The GPU instance is used to initialize the [`RenderQueue`] and [`RenderDevice`],
/// as well as to create [`WindowSurfaces`](crate::view::window::WindowSurfaces).
#[derive(Resource, Deref, DerefMut)]
pub struct RenderInstance(pub Instance);

/// The `AdapterInfo` of the adapter in use by the renderer.
#[derive(Resource, Clone, Deref, DerefMut)]
pub struct RenderAdapterInfo(pub AdapterInfo);

const GPU_NOT_FOUND_ERROR_MESSAGE: &str = if cfg!(target_os = "linux") {
    "Unable to find a GPU! Make sure you have installed required drivers! For extra information, see: https://github.com/bevyengine/bevy/blob/latest/docs/linux_dependencies.md"
} else {
    "Unable to find a GPU! Make sure you have installed required drivers!"
};

/// Initializes the renderer by retrieving and preparing the GPU instance, device and queue
/// for the specified backend.
pub async fn initialize_renderer(
    instance: &Instance,
    options: &WgpuSettings,
    request_adapter_options: &RequestAdapterOptions<'_>,
) -> (RenderDevice, RenderQueue, RenderAdapterInfo, RenderAdapter) {
    let adapter = instance
        .request_adapter(request_adapter_options)
        .await
        .expect(GPU_NOT_FOUND_ERROR_MESSAGE);

    let adapter_info = adapter.get_info();
    info!("{:?}", adapter_info);

    #[cfg(feature = "wgpu_trace")]
    let trace_path = {
        let path = std::path::Path::new("wgpu_trace");
        // ignore potential error, wgpu will log it
        let _ = std::fs::create_dir(path);
        Some(path)
    };
    #[cfg(not(feature = "wgpu_trace"))]
    let trace_path = None;

    // Maybe get features and limits based on what is supported by the adapter/backend
    let mut features = wgpu::Features::empty();
    let mut limits = options.limits.clone();
    if matches!(options.priority, WgpuSettingsPriority::Functionality) {
        features = adapter.features();
        if adapter_info.device_type == wgpu::DeviceType::DiscreteGpu {
            // `MAPPABLE_PRIMARY_BUFFERS` can have a significant, negative performance impact for
            // discrete GPUs due to having to transfer data across the PCI-E bus and so it
            // should not be automatically enabled in this case. It is however beneficial for
            // integrated GPUs.
            features -= wgpu::Features::MAPPABLE_PRIMARY_BUFFERS;
        }
        limits = adapter.limits();
    }

    // Enforce the disabled features
    if let Some(disabled_features) = options.disabled_features {
        features -= disabled_features;
    }
    // NOTE: |= is used here to ensure that any explicitly-enabled features are respected.
    features |= options.features;

    // Enforce the limit constraints
    if let Some(constrained_limits) = options.constrained_limits.as_ref() {
        // NOTE: Respect the configured limits as an 'upper bound'. This means for 'max' limits, we
        // take the minimum of the calculated limits according to the adapter/backend and the
        // specified max_limits. For 'min' limits, take the maximum instead. This is intended to
        // err on the side of being conservative. We can't claim 'higher' limits that are supported
        // but we can constrain to 'lower' limits.
        limits = wgpu::Limits {
            max_texture_dimension_1d: limits
                .max_texture_dimension_1d
                .min(constrained_limits.max_texture_dimension_1d),
            max_texture_dimension_2d: limits
                .max_texture_dimension_2d
                .min(constrained_limits.max_texture_dimension_2d),
            max_texture_dimension_3d: limits
                .max_texture_dimension_3d
                .min(constrained_limits.max_texture_dimension_3d),
            max_texture_array_layers: limits
                .max_texture_array_layers
                .min(constrained_limits.max_texture_array_layers),
            max_bind_groups: limits
                .max_bind_groups
                .min(constrained_limits.max_bind_groups),
            max_dynamic_uniform_buffers_per_pipeline_layout: limits
                .max_dynamic_uniform_buffers_per_pipeline_layout
                .min(constrained_limits.max_dynamic_uniform_buffers_per_pipeline_layout),
            max_dynamic_storage_buffers_per_pipeline_layout: limits
                .max_dynamic_storage_buffers_per_pipeline_layout
                .min(constrained_limits.max_dynamic_storage_buffers_per_pipeline_layout),
            max_sampled_textures_per_shader_stage: limits
                .max_sampled_textures_per_shader_stage
                .min(constrained_limits.max_sampled_textures_per_shader_stage),
            max_samplers_per_shader_stage: limits
                .max_samplers_per_shader_stage
                .min(constrained_limits.max_samplers_per_shader_stage),
            max_storage_buffers_per_shader_stage: limits
                .max_storage_buffers_per_shader_stage
                .min(constrained_limits.max_storage_buffers_per_shader_stage),
            max_storage_textures_per_shader_stage: limits
                .max_storage_textures_per_shader_stage
                .min(constrained_limits.max_storage_textures_per_shader_stage),
            max_uniform_buffers_per_shader_stage: limits
                .max_uniform_buffers_per_shader_stage
                .min(constrained_limits.max_uniform_buffers_per_shader_stage),
            max_uniform_buffer_binding_size: limits
                .max_uniform_buffer_binding_size
                .min(constrained_limits.max_uniform_buffer_binding_size),
            max_storage_buffer_binding_size: limits
                .max_storage_buffer_binding_size
                .min(constrained_limits.max_storage_buffer_binding_size),
            max_vertex_buffers: limits
                .max_vertex_buffers
                .min(constrained_limits.max_vertex_buffers),
            max_vertex_attributes: limits
                .max_vertex_attributes
                .min(constrained_limits.max_vertex_attributes),
            max_vertex_buffer_array_stride: limits
                .max_vertex_buffer_array_stride
                .min(constrained_limits.max_vertex_buffer_array_stride),
            max_push_constant_size: limits
                .max_push_constant_size
                .min(constrained_limits.max_push_constant_size),
            min_uniform_buffer_offset_alignment: limits
                .min_uniform_buffer_offset_alignment
                .max(constrained_limits.min_uniform_buffer_offset_alignment),
            min_storage_buffer_offset_alignment: limits
                .min_storage_buffer_offset_alignment
                .max(constrained_limits.min_storage_buffer_offset_alignment),
            max_inter_stage_shader_components: limits
                .max_inter_stage_shader_components
                .min(constrained_limits.max_inter_stage_shader_components),
            max_compute_workgroup_storage_size: limits
                .max_compute_workgroup_storage_size
                .min(constrained_limits.max_compute_workgroup_storage_size),
            max_compute_invocations_per_workgroup: limits
                .max_compute_invocations_per_workgroup
                .min(constrained_limits.max_compute_invocations_per_workgroup),
            max_compute_workgroup_size_x: limits
                .max_compute_workgroup_size_x
                .min(constrained_limits.max_compute_workgroup_size_x),
            max_compute_workgroup_size_y: limits
                .max_compute_workgroup_size_y
                .min(constrained_limits.max_compute_workgroup_size_y),
            max_compute_workgroup_size_z: limits
                .max_compute_workgroup_size_z
                .min(constrained_limits.max_compute_workgroup_size_z),
            max_compute_workgroups_per_dimension: limits
                .max_compute_workgroups_per_dimension
                .min(constrained_limits.max_compute_workgroups_per_dimension),
            max_buffer_size: limits
                .max_buffer_size
                .min(constrained_limits.max_buffer_size),
            max_bindings_per_bind_group: limits
                .max_bindings_per_bind_group
                .min(constrained_limits.max_bindings_per_bind_group),
        };
    }

    let (device, queue) = adapter
        .request_device(
            &wgpu::DeviceDescriptor {
                label: options.device_label.as_ref().map(|a| a.as_ref()),
                features,
                limits,
            },
            trace_path,
        )
        .await
        .unwrap();
    let queue = Arc::new(queue);
    let adapter = Arc::new(adapter);
    (
        RenderDevice::from(device),
        RenderQueue(queue),
        RenderAdapterInfo(adapter_info),
        RenderAdapter(adapter),
    )
}

/// The context with all information required to interact with the GPU.
///
/// The [`RenderDevice`] is used to create render resources and the
/// the [`CommandEncoder`] is used to record a series of GPU operations.
pub struct RenderContext {
    render_device: RenderDevice,
    command_encoder: Option<CommandEncoder>,
    command_buffers: Vec<CommandBuffer>,
}

impl RenderContext {
    /// Creates a new [`RenderContext`] from a [`RenderDevice`].
    pub fn new(render_device: RenderDevice) -> Self {
        Self {
            render_device,
            command_encoder: None,
            command_buffers: Vec::new(),
        }
    }

    /// Gets the underlying [`RenderDevice`].
    pub fn render_device(&self) -> &RenderDevice {
        &self.render_device
    }

    /// Gets the current [`CommandEncoder`].
    pub fn command_encoder(&mut self) -> &mut CommandEncoder {
        self.command_encoder.get_or_insert_with(|| {
            self.render_device
                .create_command_encoder(&wgpu::CommandEncoderDescriptor::default())
        })
    }

    /// Creates a new [`TrackedRenderPass`] for the context,
    /// configured using the provided `descriptor`.
    pub fn begin_tracked_render_pass<'a>(
        &'a mut self,
        descriptor: RenderPassDescriptor<'a, '_>,
    ) -> TrackedRenderPass<'a> {
        // Cannot use command_encoder() as we need to split the borrow on self
        let command_encoder = self.command_encoder.get_or_insert_with(|| {
            self.render_device
                .create_command_encoder(&wgpu::CommandEncoderDescriptor::default())
        });
        let render_pass = command_encoder.begin_render_pass(&descriptor);
        TrackedRenderPass::new(&self.render_device, render_pass)
    }

    /// Append a [`CommandBuffer`] to the queue.
    ///
    /// If present, this will flush the currently unflushed [`CommandEncoder`]
    /// into a [`CommandBuffer`] into the queue before append the provided
    /// buffer.
    pub fn add_command_buffer(&mut self, command_buffer: CommandBuffer) {
        self.flush_encoder();
        self.command_buffers.push(command_buffer);
    }

    /// Finalizes the queue and returns the queue of [`CommandBuffer`]s.
    pub fn finish(mut self) -> Vec<CommandBuffer> {
        self.flush_encoder();
        self.command_buffers
    }

    fn flush_encoder(&mut self) {
        if let Some(encoder) = self.command_encoder.take() {
            self.command_buffers.push(encoder.finish());
        }
    }
}