Struct bevy_rapier2d::prelude::ColliderPosition[][src]

pub struct ColliderPosition(pub Isometry<f32, Unit<Complex<f32>>, 2_usize>);
Expand description

The position of a collider.

Implementations

impl ColliderPosition[src]

#[must_use]
pub fn identity() -> ColliderPosition
[src]

The identity position.

Methods from Deref<Target = Isometry<f32, Unit<Complex<f32>>, 2_usize>>

#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Isometry<T, R, D>
[src]

Inverts self.

Example

let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let inv = iso.inverse();
let pt = Point2::new(1.0, 2.0);

assert_eq!(inv * (iso * pt), pt);

pub fn inv_mul(&self, rhs: &Isometry<T, R, D>) -> Isometry<T, R, D>[src]

Computes self.inverse() * rhs in a more efficient way.

Example

let mut iso1 = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let mut iso2 = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_4);

assert_eq!(iso1.inverse() * iso2, iso1.inv_mul(&iso2));

pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>[src]

Transform the given point by this isometry.

This is the same as the multiplication self * pt.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);

pub fn transform_vector(
    &self,
    v: &Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>
) -> Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>
[src]

Transform the given vector by this isometry, ignoring the translation component of the isometry.

This is the same as the multiplication self * v.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);

pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>[src]

Transform the given point by the inverse of this isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);

pub fn inverse_transform_vector(
    &self,
    v: &Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>
) -> Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>
[src]

Transform the given vector by the inverse of this isometry, ignoring the translation component of the isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);

pub fn inverse_transform_unit_vector(
    &self,
    v: &Unit<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>>
) -> Unit<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>>
[src]

Transform the given unit vector by the inverse of this isometry, ignoring the translation component of the isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::z() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.inverse_transform_unit_vector(&Vector3::x_axis());
assert_relative_eq!(transformed_point, -Vector3::y_axis(), epsilon = 1.0e-6);

pub fn to_homogeneous(
    &self
) -> Matrix<T, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer> where
    R: SubsetOf<Matrix<T, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>>,
    Const<D>: DimNameAdd<Const<1_usize>>,
    DefaultAllocator: Allocator<T, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>, 
[src]

Converts this isometry into its equivalent homogeneous transformation matrix.

This is the same as self.to_matrix().

Example

let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5,      10.0,
                            0.5,       0.8660254, 20.0,
                            0.0,       0.0,       1.0);

assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);

pub fn to_matrix(
    &self
) -> Matrix<T, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer> where
    R: SubsetOf<Matrix<T, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>>,
    Const<D>: DimNameAdd<Const<1_usize>>,
    DefaultAllocator: Allocator<T, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>, 
[src]

Converts this isometry into its equivalent homogeneous transformation matrix.

This is the same as self.to_homogeneous().

Example

let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5,      10.0,
                            0.5,       0.8660254, 20.0,
                            0.0,       0.0,       1.0);

assert_relative_eq!(iso.to_matrix(), expected, epsilon = 1.0e-6);

pub fn lerp_slerp(
    &self,
    other: &Isometry<T, Unit<Quaternion<T>>, 3_usize>,
    t: T
) -> Isometry<T, Unit<Quaternion<T>>, 3_usize> where
    T: RealField, 
[src]

Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.

Panics if the angle between both rotations is 180 degrees (in which case the interpolation is not well-defined). Use .try_lerp_slerp instead to avoid the panic.

Examples:


let t1 = Translation3::new(1.0, 2.0, 3.0);
let t2 = Translation3::new(4.0, 8.0, 12.0);
let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let iso1 = Isometry3::from_parts(t1, q1);
let iso2 = Isometry3::from_parts(t2, q2);

let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);

assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));

pub fn try_lerp_slerp(
    &self,
    other: &Isometry<T, Unit<Quaternion<T>>, 3_usize>,
    t: T,
    epsilon: T
) -> Option<Isometry<T, Unit<Quaternion<T>>, 3_usize>> where
    T: RealField, 
[src]

Attempts to interpolate between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.

Retuns None if the angle between both rotations is 180 degrees (in which case the interpolation is not well-defined).

Examples:


let t1 = Translation3::new(1.0, 2.0, 3.0);
let t2 = Translation3::new(4.0, 8.0, 12.0);
let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let iso1 = Isometry3::from_parts(t1, q1);
let iso2 = Isometry3::from_parts(t2, q2);

let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);

assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));

pub fn lerp_slerp(
    &self,
    other: &Isometry<T, Rotation<T, 3_usize>, 3_usize>,
    t: T
) -> Isometry<T, Rotation<T, 3_usize>, 3_usize> where
    T: RealField, 
[src]

Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.

Panics if the angle between both rotations is 180 degrees (in which case the interpolation is not well-defined). Use .try_lerp_slerp instead to avoid the panic.

Examples:


let t1 = Translation3::new(1.0, 2.0, 3.0);
let t2 = Translation3::new(4.0, 8.0, 12.0);
let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let iso1 = IsometryMatrix3::from_parts(t1, q1);
let iso2 = IsometryMatrix3::from_parts(t2, q2);

let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);

assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));

pub fn try_lerp_slerp(
    &self,
    other: &Isometry<T, Rotation<T, 3_usize>, 3_usize>,
    t: T,
    epsilon: T
) -> Option<Isometry<T, Rotation<T, 3_usize>, 3_usize>> where
    T: RealField, 
[src]

Attempts to interpolate between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.

Retuns None if the angle between both rotations is 180 degrees (in which case the interpolation is not well-defined).

Examples:


let t1 = Translation3::new(1.0, 2.0, 3.0);
let t2 = Translation3::new(4.0, 8.0, 12.0);
let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let iso1 = IsometryMatrix3::from_parts(t1, q1);
let iso2 = IsometryMatrix3::from_parts(t2, q2);

let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);

assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));

pub fn lerp_slerp(
    &self,
    other: &Isometry<T, Unit<Complex<T>>, 2_usize>,
    t: T
) -> Isometry<T, Unit<Complex<T>>, 2_usize> where
    T: RealField, 
[src]

Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.

Panics if the angle between both rotations is 180 degrees (in which case the interpolation is not well-defined). Use .try_lerp_slerp instead to avoid the panic.

Examples:


let t1 = Translation2::new(1.0, 2.0);
let t2 = Translation2::new(4.0, 8.0);
let q1 = UnitComplex::new(std::f32::consts::FRAC_PI_4);
let q2 = UnitComplex::new(-std::f32::consts::PI);
let iso1 = Isometry2::from_parts(t1, q1);
let iso2 = Isometry2::from_parts(t2, q2);

let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);

assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0));
assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2);

pub fn lerp_slerp(
    &self,
    other: &Isometry<T, Rotation<T, 2_usize>, 2_usize>,
    t: T
) -> Isometry<T, Rotation<T, 2_usize>, 2_usize> where
    T: RealField, 
[src]

Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.

Panics if the angle between both rotations is 180 degrees (in which case the interpolation is not well-defined). Use .try_lerp_slerp instead to avoid the panic.

Examples:


let t1 = Translation2::new(1.0, 2.0);
let t2 = Translation2::new(4.0, 8.0);
let q1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
let q2 = Rotation2::new(-std::f32::consts::PI);
let iso1 = IsometryMatrix2::from_parts(t1, q1);
let iso2 = IsometryMatrix2::from_parts(t2, q2);

let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);

assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0));
assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2);

Trait Implementations

impl AsRef<Isometry<f32, Unit<Complex<f32>>, 2_usize>> for ColliderPosition[src]

pub fn as_ref(&self) -> &Isometry<f32, Unit<Complex<f32>>, 2_usize>[src]

Performs the conversion.

impl Clone for ColliderPosition[src]

pub fn clone(&self) -> ColliderPosition[src]

Returns a copy of the value. Read more

fn clone_from(&mut self, source: &Self)1.0.0[src]

Performs copy-assignment from source. Read more

impl<'a, 'b, 'c> ComponentSet<ColliderPosition> for QueryPipelineColliderComponentsSet<'a, 'b, 'c>[src]

fn size_hint(&self) -> usize[src]

The estimated number of elements in this set. Read more

fn for_each(&self, f: impl FnMut(Index, &ColliderPosition))[src]

Iterate through all the elements on this set.

fn index(&self, handle: Index) -> &T[src]

Get the element associated to the given handle.

impl<'a, 'b, 'c> ComponentSet<ColliderPosition> for ColliderComponentsSet<'a, 'b, 'c>[src]

fn size_hint(&self) -> usize[src]

The estimated number of elements in this set. Read more

fn for_each(&self, f: impl FnMut(Index, &ColliderPosition))[src]

Iterate through all the elements on this set.

fn index(&self, handle: Index) -> &T[src]

Get the element associated to the given handle.

impl<'a, 'b, 'c> ComponentSetMut<ColliderPosition> for ColliderComponentsSet<'a, 'b, 'c>[src]

fn set_internal(&mut self, handle: Index, val: ColliderPosition)[src]

Set the value of this element.

fn map_mut_internal<Result>(
    &mut self,
    handle: Index,
    f: impl FnOnce(&mut ColliderPosition) -> Result
) -> Option<Result>
[src]

Applies the given closure to the element associated to the given handle. Read more

impl<'a, 'b, 'c> ComponentSetOption<ColliderPosition> for QueryPipelineColliderComponentsSet<'a, 'b, 'c>[src]

fn get(&self, handle: Index) -> Option<&ColliderPosition>[src]

Get the element associated to the given handle, if there is one.

impl<'a, 'b, 'c> ComponentSetOption<ColliderPosition> for ColliderComponentsSet<'a, 'b, 'c>[src]

fn get(&self, handle: Index) -> Option<&ColliderPosition>[src]

Get the element associated to the given handle, if there is one.

impl Debug for ColliderPosition[src]

pub fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>[src]

Formats the value using the given formatter. Read more

impl Default for ColliderPosition[src]

pub fn default() -> ColliderPosition[src]

Returns the “default value” for a type. Read more

impl Deref for ColliderPosition[src]

type Target = Isometry<f32, Unit<Complex<f32>>, 2_usize>

The resulting type after dereferencing.

pub fn deref(&self) -> &Isometry<f32, Unit<Complex<f32>>, 2_usize>[src]

Dereferences the value.

impl<T> From<T> for ColliderPosition where
    Isometry<f32, Unit<Complex<f32>>, 2_usize>: From<T>, 
[src]

pub fn from(position: T) -> ColliderPosition[src]

Performs the conversion.

impl Copy for ColliderPosition[src]

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

pub fn type_id(&self) -> TypeId[src]

Gets the TypeId of self. Read more

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

pub fn borrow(&self) -> &T[src]

Immutably borrows from an owned value. Read more

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

pub fn borrow_mut(&mut self) -> &mut T[src]

Mutably borrows from an owned value. Read more

impl<T> Downcast for T where
    T: Any

pub fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait. Read more

pub fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait. Read more

pub fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s. Read more

pub fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s. Read more

impl<T> DowncastSync for T where
    T: Any + Send + Sync

pub fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + 'static + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait. Read more

impl<T> From<T> for T[src]

pub fn from(t: T) -> T[src]

Performs the conversion.

impl<T> FromWorld for T where
    T: Default

pub fn from_world(_world: &mut World) -> T

Creates Self using data from the given [World]

impl<T> Instrument for T[src]

fn instrument(self, span: Span) -> Instrumented<Self>[src]

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

fn in_current_span(self) -> Instrumented<Self>[src]

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

pub fn into(self) -> U[src]

Performs the conversion.

impl<T> Pointable for T

pub const ALIGN: usize

The alignment of pointer.

type Init = T

The type for initializers.

pub unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more

pub unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more

pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more

pub unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 

pub fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

pub fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).

pub fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.

pub fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

pub fn to_owned(&self) -> T[src]

Creates owned data from borrowed data, usually by cloning. Read more

pub fn clone_into(&self, target: &mut T)[src]

🔬 This is a nightly-only experimental API. (toowned_clone_into)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]

Performs the conversion.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]

Performs the conversion.

impl<T> TypeData for T where
    T: 'static + Send + Sync + Clone

pub fn clone_type_data(&self) -> Box<dyn TypeData + 'static, Global>

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 

pub fn vzip(self) -> V

impl<T> Component for T where
    T: 'static + Send + Sync