1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
use rand_core::RngCore;
use std::ops::{AddAssign, MulAssign};
use std::sync::Arc;

use futures::Future;

use ff::{Field, PrimeField};
use group::{prime::PrimeCurveAffine, Curve};
use pairing::Engine;

use super::{ParameterSource, Proof};

use crate::{Circuit, ConstraintSystem, Index, LinearCombination, SynthesisError, Variable};

use crate::domain::{EvaluationDomain, Scalar};

use crate::multiexp::{multiexp, DensityTracker, FullDensity};

use crate::multicore::Worker;

fn eval<S: PrimeField>(
    lc: &LinearCombination<S>,
    mut input_density: Option<&mut DensityTracker>,
    mut aux_density: Option<&mut DensityTracker>,
    input_assignment: &[S],
    aux_assignment: &[S],
) -> S {
    let mut acc = S::zero();

    for &(index, coeff) in lc.0.iter() {
        let mut tmp;

        match index {
            Variable(Index::Input(i)) => {
                tmp = input_assignment[i];
                if let Some(ref mut v) = input_density {
                    v.inc(i);
                }
            }
            Variable(Index::Aux(i)) => {
                tmp = aux_assignment[i];
                if let Some(ref mut v) = aux_density {
                    v.inc(i);
                }
            }
        }

        if coeff == S::one() {
            acc.add_assign(&tmp);
        } else {
            tmp.mul_assign(&coeff);
            acc.add_assign(&tmp);
        }
    }

    acc
}

struct ProvingAssignment<S: PrimeField> {
    // Density of queries
    a_aux_density: DensityTracker,
    b_input_density: DensityTracker,
    b_aux_density: DensityTracker,

    // Evaluations of A, B, C polynomials
    a: Vec<Scalar<S>>,
    b: Vec<Scalar<S>>,
    c: Vec<Scalar<S>>,

    // Assignments of variables
    input_assignment: Vec<S>,
    aux_assignment: Vec<S>,
}

impl<S: PrimeField> ConstraintSystem<S> for ProvingAssignment<S> {
    type Root = Self;

    fn alloc<F, A, AR>(&mut self, _: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<S, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        self.aux_assignment.push(f()?);
        self.a_aux_density.add_element();
        self.b_aux_density.add_element();

        Ok(Variable(Index::Aux(self.aux_assignment.len() - 1)))
    }

    fn alloc_input<F, A, AR>(&mut self, _: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<S, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        self.input_assignment.push(f()?);
        self.b_input_density.add_element();

        Ok(Variable(Index::Input(self.input_assignment.len() - 1)))
    }

    fn enforce<A, AR, LA, LB, LC>(&mut self, _: A, a: LA, b: LB, c: LC)
    where
        A: FnOnce() -> AR,
        AR: Into<String>,
        LA: FnOnce(LinearCombination<S>) -> LinearCombination<S>,
        LB: FnOnce(LinearCombination<S>) -> LinearCombination<S>,
        LC: FnOnce(LinearCombination<S>) -> LinearCombination<S>,
    {
        let a = a(LinearCombination::zero());
        let b = b(LinearCombination::zero());
        let c = c(LinearCombination::zero());

        self.a.push(Scalar(eval(
            &a,
            // Inputs have full density in the A query
            // because there are constraints of the
            // form x * 0 = 0 for each input.
            None,
            Some(&mut self.a_aux_density),
            &self.input_assignment,
            &self.aux_assignment,
        )));
        self.b.push(Scalar(eval(
            &b,
            Some(&mut self.b_input_density),
            Some(&mut self.b_aux_density),
            &self.input_assignment,
            &self.aux_assignment,
        )));
        self.c.push(Scalar(eval(
            &c,
            // There is no C polynomial query,
            // though there is an (beta)A + (alpha)B + C
            // query for all aux variables.
            // However, that query has full density.
            None,
            None,
            &self.input_assignment,
            &self.aux_assignment,
        )));
    }

    fn push_namespace<NR, N>(&mut self, _: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        // Do nothing; we don't care about namespaces in this context.
    }

    fn pop_namespace(&mut self) {
        // Do nothing; we don't care about namespaces in this context.
    }

    fn get_root(&mut self) -> &mut Self::Root {
        self
    }
}

pub fn create_random_proof<E, C, R, P: ParameterSource<E>>(
    circuit: C,
    params: P,
    mut rng: &mut R,
) -> Result<Proof<E>, SynthesisError>
where
    E: Engine,
    C: Circuit<E::Fr>,
    R: RngCore,
{
    let r = E::Fr::random(&mut rng);
    let s = E::Fr::random(&mut rng);

    create_proof::<E, C, P>(circuit, params, r, s)
}

pub fn create_proof<E, C, P: ParameterSource<E>>(
    circuit: C,
    mut params: P,
    r: E::Fr,
    s: E::Fr,
) -> Result<Proof<E>, SynthesisError>
where
    E: Engine,
    C: Circuit<E::Fr>,
{
    let mut prover = ProvingAssignment {
        a_aux_density: DensityTracker::new(),
        b_input_density: DensityTracker::new(),
        b_aux_density: DensityTracker::new(),
        a: vec![],
        b: vec![],
        c: vec![],
        input_assignment: vec![],
        aux_assignment: vec![],
    };

    prover.alloc_input(|| "", || Ok(E::Fr::one()))?;

    circuit.synthesize(&mut prover)?;

    for i in 0..prover.input_assignment.len() {
        prover.enforce(|| "", |lc| lc + Variable(Index::Input(i)), |lc| lc, |lc| lc);
    }

    let worker = Worker::new();

    let vk = params.get_vk(prover.input_assignment.len())?;

    let h = {
        let mut a = EvaluationDomain::from_coeffs(prover.a)?;
        let mut b = EvaluationDomain::from_coeffs(prover.b)?;
        let mut c = EvaluationDomain::from_coeffs(prover.c)?;
        a.ifft(&worker);
        a.coset_fft(&worker);
        b.ifft(&worker);
        b.coset_fft(&worker);
        c.ifft(&worker);
        c.coset_fft(&worker);

        a.mul_assign(&worker, &b);
        drop(b);
        a.sub_assign(&worker, &c);
        drop(c);
        a.divide_by_z_on_coset(&worker);
        a.icoset_fft(&worker);
        let mut a = a.into_coeffs();
        let a_len = a.len() - 1;
        a.truncate(a_len);
        // TODO: parallelize if it's even helpful
        let a = Arc::new(a.into_iter().map(|s| s.0.to_le_bits()).collect::<Vec<_>>());

        multiexp(&worker, params.get_h(a.len())?, FullDensity, a)
    };

    // TODO: parallelize if it's even helpful
    let input_assignment = Arc::new(
        prover
            .input_assignment
            .into_iter()
            .map(|s| s.to_le_bits())
            .collect::<Vec<_>>(),
    );
    let aux_assignment = Arc::new(
        prover
            .aux_assignment
            .into_iter()
            .map(|s| s.to_le_bits())
            .collect::<Vec<_>>(),
    );

    let l = multiexp(
        &worker,
        params.get_l(aux_assignment.len())?,
        FullDensity,
        aux_assignment.clone(),
    );

    let a_aux_density_total = prover.a_aux_density.get_total_density();

    let (a_inputs_source, a_aux_source) =
        params.get_a(input_assignment.len(), a_aux_density_total)?;

    let a_inputs = multiexp(
        &worker,
        a_inputs_source,
        FullDensity,
        input_assignment.clone(),
    );
    let a_aux = multiexp(
        &worker,
        a_aux_source,
        Arc::new(prover.a_aux_density),
        aux_assignment.clone(),
    );

    let b_input_density = Arc::new(prover.b_input_density);
    let b_input_density_total = b_input_density.get_total_density();
    let b_aux_density = Arc::new(prover.b_aux_density);
    let b_aux_density_total = b_aux_density.get_total_density();

    let (b_g1_inputs_source, b_g1_aux_source) =
        params.get_b_g1(b_input_density_total, b_aux_density_total)?;

    let b_g1_inputs = multiexp(
        &worker,
        b_g1_inputs_source,
        b_input_density.clone(),
        input_assignment.clone(),
    );
    let b_g1_aux = multiexp(
        &worker,
        b_g1_aux_source,
        b_aux_density.clone(),
        aux_assignment.clone(),
    );

    let (b_g2_inputs_source, b_g2_aux_source) =
        params.get_b_g2(b_input_density_total, b_aux_density_total)?;

    let b_g2_inputs = multiexp(
        &worker,
        b_g2_inputs_source,
        b_input_density,
        input_assignment,
    );
    let b_g2_aux = multiexp(&worker, b_g2_aux_source, b_aux_density, aux_assignment);

    if bool::from(vk.delta_g1.is_identity() | vk.delta_g2.is_identity()) {
        // If this element is zero, someone is trying to perform a
        // subversion-CRS attack.
        return Err(SynthesisError::UnexpectedIdentity);
    }

    let mut g_a = vk.delta_g1 * &r;
    AddAssign::<&E::G1Affine>::add_assign(&mut g_a, &vk.alpha_g1);
    let mut g_b = vk.delta_g2 * &s;
    AddAssign::<&E::G2Affine>::add_assign(&mut g_b, &vk.beta_g2);
    let mut g_c;
    {
        let mut rs = r;
        rs.mul_assign(&s);

        g_c = vk.delta_g1 * &rs;
        AddAssign::<&E::G1>::add_assign(&mut g_c, &(vk.alpha_g1 * &s));
        AddAssign::<&E::G1>::add_assign(&mut g_c, &(vk.beta_g1 * &r));
    }
    let mut a_answer = a_inputs.wait()?;
    AddAssign::<&E::G1>::add_assign(&mut a_answer, &a_aux.wait()?);
    AddAssign::<&E::G1>::add_assign(&mut g_a, &a_answer);
    MulAssign::<E::Fr>::mul_assign(&mut a_answer, s);
    AddAssign::<&E::G1>::add_assign(&mut g_c, &a_answer);

    let mut b1_answer: E::G1 = b_g1_inputs.wait()?;
    AddAssign::<&E::G1>::add_assign(&mut b1_answer, &b_g1_aux.wait()?);
    let mut b2_answer = b_g2_inputs.wait()?;
    AddAssign::<&E::G2>::add_assign(&mut b2_answer, &b_g2_aux.wait()?);

    AddAssign::<&E::G2>::add_assign(&mut g_b, &b2_answer);
    MulAssign::<E::Fr>::mul_assign(&mut b1_answer, r);
    AddAssign::<&E::G1>::add_assign(&mut g_c, &b1_answer);
    AddAssign::<&E::G1>::add_assign(&mut g_c, &h.wait()?);
    AddAssign::<&E::G1>::add_assign(&mut g_c, &l.wait()?);

    Ok(Proof {
        a: g_a.to_affine(),
        b: g_b.to_affine(),
        c: g_c.to_affine(),
    })
}