1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
// Copyright 2020 IOTA Stiftung
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
// the License. You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
// an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and limitations under the License.

//! This module contains unsigned integers encoded by 384 bits.

mod constants;

pub use constants::{
    BE_U32_0, BE_U32_1, BE_U32_2, BE_U32_HALF_MAX, BE_U32_HALF_MAX_T242, BE_U32_MAX, BE_U8_0, BE_U8_1, BE_U8_2,
    BE_U8_MAX, LE_U32_0, LE_U32_1, LE_U32_2, LE_U32_HALF_MAX, LE_U32_HALF_MAX_T242, LE_U32_MAX, LE_U32_MAX_T242,
    LE_U32_NEG_HALF_MAX_T242, LE_U32_ONLY_T243_OCCUPIED, LE_U8_0, LE_U8_1, LE_U8_2, LE_U8_MAX,
};

use crate::ternary::bigint::{
    binary_representation::{BinaryRepresentation, U32Repr, U8Repr},
    endianness::{BigEndian, LittleEndian},
    error::Error,
    overflowing_add::OverflowingAdd,
    split_integer::SplitInteger,
    t243, I384, T242, T243,
};

use bee_ternary::Utrit;

use byteorder::{self, ByteOrder};

use std::{
    cmp::Ordering,
    convert::TryFrom,
    fmt,
    marker::PhantomData,
    ops::{Deref, DerefMut},
};

/// A big integer encoding an unsigned integer with 384 bits.
///
/// `T` is usually taken as a `[u32; 12]` or `[u8; 48]`.
///
/// `E` refers to the endianness of the digits in `T`. This means that in the case of `[u32; 12]`, if `E == BigEndian`,
/// that the `u32` at position i=0 is considered the most significant digit. The endianness `E` here makes no statement
/// about the endianness of each single digit within itself (this is then dependent on the endianness of the platform
/// this code is run on).
///
/// For `E == LittleEndian` the digit at the last position is considered to be the most significant.
#[derive(Clone, Copy)]
pub struct U384<E, T> {
    pub(crate) inner: T,
    _phantom: PhantomData<E>,
}

impl<E, T> Deref for U384<E, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl<E, T> DerefMut for U384<E, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.inner
    }
}

impl<E, T, D> fmt::Debug for U384<E, T>
where
    E: fmt::Debug,
    T: BinaryRepresentation<Inner = D>,
    D: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("U384")
            .field("inner", &self.inner.iter())
            .field("_phantom", &self._phantom)
            .finish()
    }
}

impl U384<BigEndian, U32Repr> {
    /// Reinterprets the `U384` as an `I384`.
    pub fn as_i384(self) -> I384<BigEndian, U32Repr> {
        I384::<BigEndian, U32Repr>::from_array(self.inner)
    }

    /// Shifts the `U384` into signed space.
    pub fn shift_into_i384(mut self) -> I384<BigEndian, U32Repr> {
        self.sub_inplace(*BE_U32_HALF_MAX);
        self.sub_inplace(Self::one());
        self.as_i384()
    }

    /// Adds `other` onto `self` in place.
    pub fn add_inplace(&mut self, other: Self) {
        let mut overflown = false;
        let self_iter = self.inner.iter_mut().rev();
        let other_iter = other.inner.iter().rev();

        for (s, o) in self_iter.zip(other_iter) {
            let (sum, still_overflown) = s.overflowing_add_with_carry(*o, overflown as u32);
            *s = sum;
            overflown = still_overflown;
        }
    }

    /// Adds `other` in place, returning the number of digits required to accomodate `other` (starting from the least
    /// significant one).
    pub fn add_digit_inplace<T: Into<u32>>(&mut self, other: T) -> usize {
        let other = other.into();

        let mut i = self.inner.len() - 1;

        let (sum, mut overflown) = self.inner[i].overflowing_add(other);
        self.inner[i] = sum;

        i -= 1;

        while overflown {
            let (sum, still_overflown) = self.inner[i].overflowing_add(1u32);
            self.inner[i] = sum;
            overflown = still_overflown;
            i -= 1;
        }

        i
    }

    /// Divides the `U384` by 2 by bitshifting all bits one position to the right.
    pub fn divide_by_two(&mut self) {
        let mut i = self.inner.len() - 1;
        while i < self.inner.len() - 1 {
            let (left_slice, right_slice) = self.inner.split_at_mut(i + 1);
            let left = &mut left_slice[i];
            let right = &mut right_slice[0];
            *left >>= 1;
            *left |= *right << 31;
            i -= 1;
        }
        self.inner[0] >>= 1;
    }

    /// Creates an `U384` from an unbalanced `T242`.
    pub fn from_t242(trits: T242<Utrit>) -> Self {
        let u384_le = U384::<LittleEndian, U32Repr>::from_t242(trits);
        u384_le.into()
    }

    /// Subtract `other` from `self` inplace.
    ///
    /// This function is defined in terms of `overflowing_add` by making use of the following identity (in terms of
    /// Two's complement, and where `!` is logical bitwise negation):
    ///
    /// !x = -x - 1 => -x = !x + 1
    pub fn sub_inplace(&mut self, other: Self) {
        // The first `borrow` is always true because the addition operation needs to account for the above).
        let mut borrow = true;

        for (s, o) in self.inner.iter_mut().rev().zip(other.inner.iter().rev()) {
            let (sum, has_overflown) = s.overflowing_add_with_carry(!*o, borrow as u32);
            *s = sum;
            borrow = has_overflown;
        }
    }

    /// Converts a signed integer represented by the balanced trits in `T243` to the unsigned binary integer `U384`.
    /// It does this by shifting the `T243` into signed range (by adding 1 to all its trits).  `T243` is assumed to be
    /// in little endian representation, with the most significant trit being at the largest index in the array.
    ///
    /// This is done in the following steps:
    ///
    /// 1. `1` is added to all balanced trits, making them *unsigned*: `{-1, 0, 1} -> {0, 1, 2}`.
    /// 2. The `T243` are converted to base 10 and through this immediately to `I384` by calculating the sum `s
    ///
    /// ```ignore
    /// s = t_242 * 3^241 + t_241 * 3^240 + ...
    ///   + t_{i+1} * 3^{i} + t_i * 3^{i-1} + t_{i-1} * 3^{i-2} + ...
    ///   + t_1 * 3 + t_0
    /// ```
    ///
    /// To perform this sum efficiently, its accumulation is staggered, so that each multiplication by 3 is done in each
    /// iteration of accumulating loop. This can be understood by factoring the powers of 3 from the previous sum:
    ///
    /// ```ignore
    /// s = (...((t_242 * 3 + t_241) * 3 + t_240) * 3 + ...
    ///   +  ...((t_{i+1} * 3 + t_i) * 3 + t_{i-1}) * 3 + ...
    ///   +  ...t_1) * 3 + t_0
    /// ```
    ///
    /// Expressed in procedural form, this is the sum accumulated in `acc` with the index `i` running from `[242..0`]:
    ///
    /// ```ignore
    /// acc = 0
    /// for i, trit in trits.rev():
    ///     acc := acc + trit * 3^i
    /// ```
    pub fn try_from_t243(trits: T243<Utrit>) -> Result<Self, Error> {
        let u384_le = U384::<LittleEndian, U32Repr>::try_from_t243(trits)?;
        Ok(u384_le.into())
    }
}

impl U384<LittleEndian, U32Repr> {
    /// Reinterprets the `U384` as an `I384`.
    pub fn as_i384(self) -> I384<LittleEndian, U32Repr> {
        I384::<LittleEndian, U32Repr>::from_array(self.inner)
    }

    /// Adds `other` onto `self` in place.
    pub fn add_inplace(&mut self, other: Self) {
        let mut overflown = false;
        let self_iter = self.inner.iter_mut();
        let other_iter = other.inner.iter();

        for (s, o) in self_iter.zip(other_iter) {
            let (sum, still_overflown) = s.overflowing_add_with_carry(*o, overflown as u32);
            *s = sum;
            overflown = still_overflown;
        }
    }

    /// Adds `other` in place, returning the number of digits required to accomodate `other` (starting from the least
    /// significant one).
    pub fn add_digit_inplace<T: Into<u32>>(&mut self, other: T) -> usize {
        let other = other.into();

        let (sum, mut overflown) = self.inner[0].overflowing_add(other);
        self.inner[0] = sum;

        let mut i = 1;

        while overflown {
            let (sum, still_overflown) = self.inner[i].overflowing_add(1u32);
            self.inner[i] = sum;
            overflown = still_overflown;
            i += 1;
        }

        i
    }

    /// Divides the `U384` by 2 by bitshifting all bits one position to the right.
    pub fn divide_by_two(&mut self) {
        let mut i = 0;
        while i < self.inner.len() - 1 {
            let (left_slice, right_slice) = self.inner.split_at_mut(i + 1);
            let left = &mut left_slice[i];
            let right = &mut right_slice[0];
            *left >>= 1;
            *left |= *right << 31;
            i += 1;
        }
        self.inner[self.inner.len() - 1] >>= 1;
    }

    /// Creates an `U384` from an unbalanced `T242`.
    pub fn from_t242(trits: T242<Utrit>) -> Self {
        let t243 = trits.into_t243();

        // Safe, because `UT242::MAX` always fits into U384.
        Self::try_from_t243(t243).unwrap()
    }

    /// Shifts the `U384` into signed space.
    pub fn shift_into_i384(mut self) -> I384<LittleEndian, U32Repr> {
        self.sub_inplace(*LE_U32_HALF_MAX);
        self.sub_inplace(Self::one());
        self.as_i384()
    }

    /// Subtract `other` from `self` inplace.
    ///
    /// This function is defined in terms of `overflowing_add` by making use of the following identity (in terms of
    /// Two's complement, and where `!` is logical bitwise negation):
    ///
    /// !x = -x -1 => -x = !x + 1
    pub fn sub_inplace(&mut self, other: Self) {
        let self_iter = self.inner.iter_mut();
        let other_iter = other.inner.iter();

        // The first `borrow` is always true because the addition operation needs to account for the above).
        let mut borrow = true;

        for (s, o) in self_iter.zip(other_iter) {
            let (sum, has_overflown) = s.overflowing_add_with_carry(!*o, borrow as u32);
            *s = sum;
            borrow = has_overflown;
        }
    }

    /// Converts a signed integer represented by the balanced trits in `T243` to the unsigned binary integer `U384`.
    /// It does this by shifting the `T243` into signed range (by adding 1 to all its trits).  `T243` is assumed to be
    /// in little endian representation, with the most significant trit being at the largest index in the array.
    ///
    /// This is done in the following steps:
    ///
    /// 1. `1` is added to all balanced trits, making them *unsigned*: `{-1, 0, 1} -> {0, 1, 2}`.
    /// 2. The `T243` are converted to base 10 and through this immediately to `I384` by calculating the sum `s
    ///
    /// ```ignore
    /// s = t_242 * 3^241 + t_241 * 3^240 + ...
    ///   + t_{i+1} * 3^{i} + t_i * 3^{i-1} + t_{i-1} * 3^{i-2} + ...
    ///   + t_1 * 3 + t_0
    /// ```
    ///
    /// To perform this sum efficiently, its accumulation is staggered, so that each multiplication by 3 is done in each
    /// iteration of accumulating loop. This can be understood by factoring the powers of 3 from the previous sum:
    ///
    /// ```ignore
    /// s = (...((t_242 * 3 + t_241) * 3 + t_240) * 3 + ...
    ///   +  ...((t_{i+1} * 3 + t_i) * 3 + t_{i-1}) * 3 + ...
    ///   +  ...t_1) * 3 + t_0
    /// ```
    ///
    /// Expressed in procedural form, this is the sum accumulated in `acc` with the index `i` running from `[242..0`]:
    ///
    /// ```ignore
    /// acc = 0
    /// for i, trit in trits.rev():
    ///     acc := acc + trit * 3^i
    /// ```
    pub fn try_from_t243(trits: T243<Utrit>) -> Result<Self, Error> {
        if trits > *t243::UTRIT_U384_MAX {
            return Err(Error::TernaryExceedsBinaryRange);
        }

        // The accumulator is a little endian bigint using `u32` as an internal representation.
        let mut accumulator = Self::zero();
        let mut accumulator_extent = 1;

        // Iterate over all trits starting from the most significant one.
        //
        // Note that the most significant trit is that at position i=241, not i=242.
        // 384 bits cannot represent 243 trits and this we choose to ignore the technically most significant one.

        // Optimization: advance the iterator until the first non-zero trit is found.
        let mut binary_trits_iterator = trits.as_i8_slice().iter().rev().peekable();
        while let Some(0) = binary_trits_iterator.peek() {
            binary_trits_iterator.next();
        }

        for binary_trit in binary_trits_iterator {
            // Iterate over all digits in the bigint accumulator, multiplying by 3 into a `u64`.
            // Overflow is handled by taking the lower `u32` as the new digit, and the higher `u32` as the carry.
            let mut carry: u32 = 0;
            for digit in accumulator.inner[0..accumulator_extent].iter_mut() {
                let new_digit = *digit as u64 * 3u64 + carry as u64;

                *digit = new_digit.lo();
                carry = new_digit.hi();
            }

            if carry != 0 {
                unsafe {
                    *accumulator.inner.get_unchecked_mut(accumulator_extent) = carry;
                }
                accumulator_extent += 1;
            }

            let new_extent = accumulator.add_digit_inplace(*binary_trit as u32);
            if new_extent > accumulator_extent {
                accumulator_extent = new_extent;
            }
        }

        Ok(accumulator)
    }
}

impl_const_functions!(
    ( U384 ),
    { BigEndian, LittleEndian },
    { U8Repr, U32Repr }
);

impl_constants!(
    U384<BigEndian, U8Repr> => [
        (zero, BE_U8_0),
        (one, BE_U8_1),
        (two, BE_U8_2),
        (max, BE_U8_MAX),
    ],
    U384<LittleEndian, U8Repr> => [
        (zero, LE_U8_0),
        (one, LE_U8_1),
        (two, LE_U8_2),
        (max, LE_U8_MAX),
    ],
    U384<BigEndian, U32Repr> => [
        (zero, BE_U32_0),
        (one, BE_U32_1),
        (two, BE_U32_2),
        (max, BE_U32_MAX),
    ],
    U384<LittleEndian, U32Repr> => [
        (zero, LE_U32_0),
        (one, LE_U32_1),
        (two, LE_U32_2),
        (max, LE_U32_MAX),
    ],
);

impl From<U384<BigEndian, U32Repr>> for U384<BigEndian, U8Repr> {
    fn from(value: U384<BigEndian, U32Repr>) -> Self {
        let mut u384_u8 = Self::zero();
        byteorder::BigEndian::write_u32_into(&value.inner, &mut u384_u8.inner);
        u384_u8
    }
}

impl From<U384<LittleEndian, U8Repr>> for U384<LittleEndian, U32Repr> {
    fn from(value: U384<LittleEndian, U8Repr>) -> Self {
        let mut u384_u32 = U384::<LittleEndian, U32Repr>::zero();
        byteorder::LittleEndian::read_u32_into(&value.inner, &mut u384_u32.inner);
        u384_u32
    }
}

impl From<T242<Utrit>> for U384<LittleEndian, U32Repr> {
    fn from(value: T242<Utrit>) -> Self {
        Self::from_t242(value)
    }
}

impl Eq for U384<LittleEndian, U32Repr> {}

impl PartialEq for U384<LittleEndian, U32Repr> {
    fn eq(&self, other: &Self) -> bool {
        self.inner == other.inner
    }
}

impl PartialOrd for U384<LittleEndian, U32Repr> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        use Ordering::*;

        let zipped_iter = self.inner.iter().rev().zip(other.inner.iter().rev());

        for (s, o) in zipped_iter {
            match s.cmp(o) {
                Ordering::Greater => return Some(Greater),
                Ordering::Less => return Some(Less),
                Ordering::Equal => continue,
            }
        }

        Some(Equal)
    }
}

impl Ord for U384<LittleEndian, U32Repr> {
    fn cmp(&self, other: &Self) -> Ordering {
        match self.partial_cmp(other) {
            Some(ordering) => ordering,
            // The ordering is total, hence `partial_cmp` will never return `None`.
            None => unreachable!(),
        }
    }
}

impl TryFrom<T243<Utrit>> for U384<LittleEndian, U32Repr> {
    type Error = Error;

    fn try_from(value: T243<Utrit>) -> Result<Self, Self::Error> {
        Self::try_from_t243(value)
    }
}

impl_toggle_endianness!((U384), U8Repr, U32Repr);