1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
//! Everything related to the `Values` trait.
//!
//! This is an internal module. Its public types are re-exported by the
//! parent.

use std::io;
use std::marker::PhantomData;
use crate::captured::Captured;
use crate::length::Length;
use crate::mode::Mode;
use crate::tag::Tag;


//------------ Values --------------------------------------------------------

/// A type that is a value encoder.
///
/// Value encoders know how to encode themselves into a
/// sequence of BER encoded values. While you can impl this trait for your
/// type manually, in practice it is often easier to define a method called
/// `encode` and let it return some dedicated value encoder type constructed
/// from the types provided by this module.
///
/// A type implementing this trait should encodes itself into one or more
/// BER values. That is, the type becomes the content or part of the content
/// of a constructed value.
pub trait Values {
    /// Returns the length of the encoded values for the given mode.
    fn encoded_len(&self, mode: Mode) -> usize;

    /// Encodes the values in the given mode and writes them to `target`.
    fn write_encoded<W: io::Write>(
        &self,
        mode: Mode,
        target: &mut W
    ) -> Result<(), io::Error>;


    //--- Provided methods

    /// Converts the encoder into one with an explicit tag.
    fn explicit(self, tag: Tag) -> Constructed<Self>
    where Self: Sized {
        Constructed::new(tag, self)
    }

    /// Captures the encoded values in the given mode.
    fn to_captured(&self, mode: Mode) -> Captured {
        let mut target = Vec::new();
        self.write_encoded(mode, &mut target).unwrap();
        Captured::new(target.into(), mode)
    }
}


//--- Blanket impls

impl<'a, T: Values> Values for &'a T {
    fn encoded_len(&self, mode: Mode) -> usize {
        (*self).encoded_len(mode)
    }

    fn write_encoded<W: io::Write>(
        &self,
        mode: Mode,
        target: &mut W
    ) -> Result<(), io::Error> {
        (*self).write_encoded(mode, target)
    }
}


//--- Impls for Tuples

/// Macro for implementing `Values` for tuples.
///
/// This macro implements `Values` for all tuples up to a certain degree.
/// It needs to be invoked as below. All the `Tx`s are the type parameters
/// of the elements the tuple, the numbers are the tuple element numbers.
/// The number need to be provided backwards ending in 0.
///
/// The `tuple` bit of the macro does the actual impl and invokes itself with
/// one less tuple element. The `write` bit below is to implement
/// `write_encoded` backwards (i.e., starting with the smallest number).
macro_rules! tupl_impl {
    // Termination: empty lists, do nothing.
    ( tuple > ) => { };

    // Impl values for the complete lists, then recurse to the lists without
    // their heads.
    ( tuple $t:ident $( $ttail:ident )* > $i:tt $( $itail:tt )* ) => {
        impl<$t: Values, $( $ttail: Values ),*> Values
                for ($t, $( $ttail ),*) {
            fn encoded_len(&self, mode: Mode) -> usize {
                self.$i.encoded_len(mode)
                $(
                    + self.$itail.encoded_len(mode)
                )*
            }

            fn write_encoded<W: io::Write>(
                &self,
                mode: Mode,
                target: &mut W
            ) -> Result<(), io::Error> {
                tupl_impl!( write self, mode, target, $i $( $itail )* );
                Ok(())
            }
        }

        tupl_impl!(
             tuple $($ttail)* > $($itail)*
        );
    };

    // Termination: empty lists, do nothing.
    ( write $self:expr, $mode:expr, $target:expr, ) => { };

    // Write all elements of tuple $self in mode $mode to $target in order.
    ( write $self:expr, $mode:expr, $target:expr, $i:tt $($itail:tt)*) => {
        tupl_impl!( write $self, $mode, $target, $($itail)* );
        $self.$i.write_encoded($mode, $target)?
    }
}

// The standard library implements things for tuples up to twelve elements,
// so we do the same.
tupl_impl!(
    tuple T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0 > 11 10 9 8 7 6 5 4 3 2 1 0
);


//--- Impl for Option

/// Encoding of an optional value.
///
/// This implementation encodes `None` as nothing, i.e., as an OPTIONAL
/// in ASN.1 parlance.
impl<V: Values> Values for Option<V> {
    fn encoded_len(&self, mode: Mode) -> usize {
        match self {
            Some(v) => v.encoded_len(mode),
            None => 0
        }
    }

    fn write_encoded<W: io::Write>(
        &self,
        mode: Mode,
        target: &mut W
    ) -> Result<(), io::Error> {
        match self {
            Some(v) => v.write_encoded(mode, target),
            None => Ok(())
        }
    }
}


//--- Impl for slice and Vec

impl<V: Values> Values for [V] {
    fn encoded_len(&self, mode: Mode) -> usize {
        self.iter().map(|v| v.encoded_len(mode)).sum()
    }

    fn write_encoded<W: io::Write>(&self, mode: Mode, target: &mut W)
        -> Result<(), io::Error>
    {
        for i in self {
            i.write_encoded(mode, target)?;
        };
        Ok(())
    }
}

impl<V: Values> Values for Vec<V> {
    fn encoded_len(&self, mode: Mode) -> usize {
        self.iter().map(|v| v.encoded_len(mode)).sum()
    }

    fn write_encoded<W: io::Write>(&self, mode: Mode, target: &mut W)
        -> Result<(), io::Error>
    {
        for i in self {
            i.write_encoded(mode, target)?;
        };
        Ok(())
    }
}


//------------ Constructed ---------------------------------------------------

/// A value encoder for a single constructed value.
pub struct Constructed<V> {
    /// The tag of the value.
    tag: Tag,

    /// A value encoder for the content of the value.
    inner: V,
}

impl<V> Constructed<V> {
    /// Creates a new constructed value encoder from a tag and content.
    ///
    /// The returned value will encode as a single constructed value with
    /// the given tag and whatever `inner` encodeds to as its content.
    pub fn new(tag: Tag, inner: V) -> Self {
        Constructed { tag, inner }
    }
}

impl<V: Values> Values for Constructed<V> {
    fn encoded_len(&self, mode: Mode) -> usize {
        let len = self.inner.encoded_len(mode);
        let len = len + match mode {
            Mode::Ber | Mode::Der => {
                Length::Definite(len).encoded_len()
            }
            Mode::Cer => {
                Length::Indefinite.encoded_len()
                + EndOfValue.encoded_len(mode)
            }
        };
        self.tag.encoded_len() + len
    }

    fn write_encoded<W: io::Write>(
        &self,
        mode: Mode,
        target: &mut W
    ) -> Result<(), io::Error> {
        self.tag.write_encoded(true, target)?;
        match mode {
            Mode::Ber | Mode::Der => {
                Length::Definite(self.inner.encoded_len(mode))
                    .write_encoded(target)?;
                self.inner.write_encoded(mode, target)
            }
            Mode::Cer => {
                Length::Indefinite.write_encoded(target)?;
                self.inner.write_encoded(mode, target)?;
                EndOfValue.write_encoded(mode, target)
            }
        }
    }
}


//------------ Choice2 -------------------------------------------------------

/// A value encoder for a two-variant enum.
///
/// Instead of implementing `Values` for an enum manually, you can just
/// define a method `encode` that returns a value of this type.
pub enum Choice2<L, R> {
    /// The first choice.
    One(L),

    /// The second choice.
    Two(R)
}

impl<L: Values, R: Values> Values for Choice2<L, R> {
    fn encoded_len(&self, mode: Mode) -> usize {
        match *self {
            Choice2::One(ref inner) => inner.encoded_len(mode),
            Choice2::Two(ref inner) => inner.encoded_len(mode),
        }
    }

    fn write_encoded<W: io::Write>(
        &self,
        mode: Mode,
        target: &mut W
    ) -> Result<(), io::Error> {
        match *self {
            Choice2::One(ref inner) => inner.write_encoded(mode, target),
            Choice2::Two(ref inner) => inner.write_encoded(mode, target),
        }
    }
}


//------------ Choice3 -------------------------------------------------------

/// A value encoder for a three-variant enum.
///
/// Instead of implementing `Values` for an enum manually, you can just
/// define a method `encode` that returns a value of this type.
pub enum Choice3<L, C, R> {
    /// The first choice.
    One(L),

    /// The second choice.
    Two(C),

    /// The third choice.
    Three(R)
}

impl<L: Values, C: Values, R: Values> Values for Choice3<L, C, R> {
    fn encoded_len(&self, mode: Mode) -> usize {
        match *self {
            Choice3::One(ref inner) => inner.encoded_len(mode),
            Choice3::Two(ref inner) => inner.encoded_len(mode),
            Choice3::Three(ref inner) => inner.encoded_len(mode),
        }
    }

    fn write_encoded<W: io::Write>(
        &self,
        mode: Mode,
        target: &mut W
    ) -> Result<(), io::Error> {
        match *self {
            Choice3::One(ref inner) => inner.write_encoded(mode, target),
            Choice3::Two(ref inner) => inner.write_encoded(mode, target),
            Choice3::Three(ref inner) => inner.write_encoded(mode, target),
        }
    }
}


//--------------- Iter -------------------------------------------------------

/// A wrapper for an iterator of values.
///
/// The wrapper is needed because a blanket impl on any iterator type is
/// currently not possible.
///
/// Note that `T` needs to be clone because we need to be able to restart
/// iterating at the beginning.
pub struct Iter<T>(pub T);

impl<T> Iter<T> {
    /// Creates a new iterator encoder atop `iter`.
    pub fn new(iter: T) -> Self {
        Iter(iter)
    }
}

/// Wraps an iterator over value encoders into a value encoder.
pub fn iter<T>(iter: T) -> Iter<T> {
    Iter::new(iter)
}


//--- IntoIterator

impl<T: IntoIterator> IntoIterator for Iter<T> {
    type Item = <T as IntoIterator>::Item;
    type IntoIter = <T as IntoIterator>::IntoIter;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl<'a, T: Clone + IntoIterator> IntoIterator for &'a Iter<T> {
    type Item = <T as IntoIterator>::Item;
    type IntoIter = <T as IntoIterator>::IntoIter;

    fn into_iter(self) -> Self::IntoIter {
        self.0.clone().into_iter()
    }
}


//--- Values

impl<T> Values for Iter<T>
where T: Clone + IntoIterator, <T as IntoIterator>::Item: Values {
    fn encoded_len(&self, mode: Mode) -> usize {
        self.into_iter().map(|item| item.encoded_len(mode)).sum()
    }

    fn write_encoded<W: io::Write>(
        &self,
        mode: Mode,
        target: &mut W
    ) -> Result<(), io::Error> {
        self.into_iter().try_for_each(|item| item.write_encoded(mode, target))
    }
}


//------------ Slice ---------------------------------------------------------

/// A wrapper for a slice of encodable values.
///
/// A value of this type will take something that can provide a reference to
/// a slice of some value and a closure that converts the values of the slice
/// into something encodable.
pub struct Slice<T, F, U, V>
where T: AsRef<[U]>, F: Fn(&U) -> V {
    /// The slice value.
    value: T,

    /// The converter function.
    f: F,

    /// A markers for extra type arguments.
    marker: PhantomData<(U, V)>,
}

impl<T, F, U, V> Slice<T, F, U, V>
where T: AsRef<[U]>, F: Fn(&U) -> V {
    /// Creates a new wrapper for a given value and closure.
    pub fn new(value: T, f: F) -> Self {
        Slice { value, f, marker: PhantomData }
    }
}

/// Creates an encodable wrapper around a slice.
///
/// The function takes a value of a type that can be converted into a slice of
/// some type and a function that converts references to slice elements into
/// some encoder.
pub fn slice<T, F, U, V>(value: T, f: F) -> Slice<T, F, U, V>
where T: AsRef<[U]>, F: Fn(&U) -> V {
    Slice::new(value, f)
}


//--- Values

impl<T, F, U, V> Values for Slice<T, F, U, V>
where T: AsRef<[U]>, F: Fn(&U) -> V, V: Values {
    fn encoded_len(&self, mode: Mode) -> usize {
        self.value.as_ref().iter().map(|v| (self.f)(v).encoded_len(mode)).sum()
    }

    fn write_encoded<W: io::Write>(
        &self,
        mode: Mode,
        target: &mut W
    ) -> Result<(), io::Error> {
        self.value.as_ref().iter().try_for_each(|v|
            (self.f)(v).write_encoded(mode, target)
        )
    }
}


//------------ Nothing -------------------------------------------------------

/// A encoder for nothing.
///
/// Unsurprisingly, this encodes as zero octets of content. It can be useful
/// for writing an encoder for an enum where some of the variants shouldn’t
/// result in content at all.
pub struct Nothing;

impl Values for Nothing {
    fn encoded_len(&self, _mode: Mode) -> usize {
        0
    }

    fn write_encoded<W: io::Write>(
        &self,
        _mode: Mode,
        _target: &mut W
    ) -> Result<(), io::Error> {
        Ok(())
    }
}


//============ Standard Functions ============================================

/// Returns a value encoder for a SEQUENCE containing `inner`.
pub fn sequence<V: Values>(inner: V) -> impl Values {
    Constructed::new(Tag::SEQUENCE, inner)
}

/// Returns a value encoder for a SEQUENCE with the given tag.
///
/// This is identical to `Constructed::new(tag, inner)`. It merely provides a
/// more memorial name.
pub fn sequence_as<V: Values>(tag: Tag, inner: V) -> impl Values {
    Constructed::new(tag, inner)
}

/// Returns a value encoder for a SET containing `inner`.
pub fn set<V: Values>(inner: V) -> impl Values {
    Constructed::new(Tag::SET, inner)
}

/// Returns a value encoder for a SET with the given tag.
///
/// This is identical to `Constructed::new(tag, inner)`. It merely provides a
/// more memorial name.
pub fn set_as<V: Values>(tag: Tag, inner: V) -> impl Values {
    Constructed::new(tag, inner)
}

/// Returns the length for a structure based on the tag and content length.
///
/// This is necessary because the length octets have a different length
/// depending on the content length.
pub fn total_encoded_len(tag: Tag, content_l: usize) -> usize {
    tag.encoded_len() + Length::Definite(content_l).encoded_len() + content_l
}

/// Writes the header for a value.
///
/// The header in the sense of this function is the identifier octets and the
/// length octets.
pub fn write_header<W: io::Write>(
    target: &mut W,
    tag: Tag,
    constructed: bool,
    content_length: usize
) -> Result<(), io::Error> {
    tag.write_encoded(constructed, target)?;
    Length::Definite(content_length).write_encoded(target)?;
    Ok(())
}


//============ Helper Types ==================================================

//------------ EndOfValue ----------------------------------------------------

/// A value encoder for the end of value marker.
struct EndOfValue;

impl Values for EndOfValue {
    fn encoded_len(&self, _: Mode) -> usize {
        2
    }

    fn write_encoded<W: io::Write>(
        &self,
        _: Mode,
        target: &mut W
    ) -> Result<(), io::Error> {
        let buf = [0, 0];
        target.write_all(&buf)
    }
}


//============ Tests =========================================================

#[cfg(test)]
mod test {
    use super::*;
    use crate::encode::PrimitiveContent;

    #[test]
    fn encode_2_tuple() {
        let mut res = Vec::new();
        (0.encode(), 1.encode()).write_encoded(Mode::Der, &mut res).unwrap();
        assert_eq!(res, b"\x02\x01\0\x02\x01\x01");
    }

    #[test]
    fn encode_4_tuple() {
        let mut res = Vec::new();
        (0.encode(), 1.encode(), 2.encode(), 3.encode())
            .write_encoded(Mode::Der, &mut res).unwrap();
        assert_eq!(res, b"\x02\x01\0\x02\x01\x01\x02\x01\x02\x02\x01\x03");
    }
}