logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//!
//! Pool of threads to run lightweight processes
//!
//! We spawn futures onto the pool with [`spawn`] method of global run queue or
//! with corresponding [`Worker`]'s spawn method.
//!
//! [`spawn`]: crate::pool::spawn
//! [`Worker`]: crate::run_queue::Worker

use crate::thread_manager::{DynamicPoolManager, DynamicRunner};
use crate::worker;
use crossbeam_channel::{unbounded, Receiver, Sender};
use lazy_static::lazy_static;
use lightproc::lightproc::LightProc;
use lightproc::proc_stack::ProcStack;
use lightproc::recoverable_handle::RecoverableHandle;
use once_cell::sync::{Lazy, OnceCell};
use std::future::Future;
use std::iter::Iterator;
use std::sync::Arc;
use std::time::Duration;
use std::{env, thread};
use tracing::trace;

///
/// Spawn a process (which contains future + process stack) onto the executor from the global level.
///
/// # Example
/// ```rust
/// use bastion_executor::prelude::*;
/// use lightproc::prelude::*;
///
/// # #[cfg(feature = "tokio-runtime")]
/// # #[tokio::main]
/// # async fn main() {
/// #    start();    
/// # }
/// #
/// # #[cfg(not(feature = "tokio-runtime"))]
/// # fn main() {
/// #    start();    
/// # }
/// #
/// # fn start() {
/// let pid = 1;
/// let stack = ProcStack::default().with_pid(pid);
///
/// let handle = spawn(
///     async {
///         panic!("test");
///     },
///     stack.clone(),
/// );
///
/// run(
///     async {
///         handle.await;
///     },
///     stack.clone(),
/// );
/// # }
/// ```
pub fn spawn<F, T>(future: F, stack: ProcStack) -> RecoverableHandle<T>
where
    F: Future<Output = T> + Send + 'static,
    T: Send + 'static,
{
    let (task, handle) = LightProc::recoverable(future, worker::schedule, stack);
    task.schedule();
    handle
}

/// Spawns a blocking task.
///
/// The task will be spawned onto a thread pool specifically dedicated to blocking tasks.
pub fn spawn_blocking<F, R>(future: F, stack: ProcStack) -> RecoverableHandle<R>
where
    F: Future<Output = R> + Send + 'static,
    R: Send + 'static,
{
    let (task, handle) = LightProc::recoverable(future, schedule, stack);
    task.schedule();
    handle
}

///
/// Acquire the static Pool reference
#[inline]
pub fn get() -> &'static Pool {
    &*POOL
}

impl Pool {
    ///
    /// Spawn a process (which contains future + process stack) onto the executor via [Pool] interface.
    pub fn spawn<F, T>(&self, future: F, stack: ProcStack) -> RecoverableHandle<T>
    where
        F: Future<Output = T> + Send + 'static,
        T: Send + 'static,
    {
        // Log this `spawn` operation.
        let _child_id = stack.get_pid() as u64;
        let _parent_id = worker::get_proc_stack(|t| t.get_pid() as u64).unwrap_or(0);

        let (task, handle) = LightProc::recoverable(future, worker::schedule, stack);
        task.schedule();
        handle
    }
}

/// Enqueues work, attempting to send to the thread pool in a
/// nonblocking way and spinning up needed amount of threads
/// based on the previous statistics without relying on
/// if there is not a thread ready to accept the work or not.
pub(crate) fn schedule(t: LightProc) {
    if let Err(err) = POOL.sender.try_send(t) {
        // We were not able to send to the channel without
        // blocking.
        POOL.sender.send(err.into_inner()).unwrap();
    }
    // Add up for every incoming scheduled task
    DYNAMIC_POOL_MANAGER.get().unwrap().increment_frequency();
}

///
/// Low watermark value, defines the bare minimum of the pool.
/// Spawns initial thread set.
/// Can be configurable with env var `BASTION_BLOCKING_THREADS` at runtime.
#[inline]
fn low_watermark() -> &'static u64 {
    lazy_static! {
        static ref LOW_WATERMARK: u64 = {
            env::var_os("BASTION_BLOCKING_THREADS")
                .map(|x| x.to_str().unwrap().parse::<u64>().unwrap())
                .unwrap_or(DEFAULT_LOW_WATERMARK)
        };
    }

    &*LOW_WATERMARK
}

/// If low watermark isn't configured this is the default scaler value.
/// This value is used for the heuristics of the scaler
const DEFAULT_LOW_WATERMARK: u64 = 2;

/// Pool interface between the scheduler and thread pool
#[derive(Debug)]
pub struct Pool {
    sender: Sender<LightProc>,
    receiver: Receiver<LightProc>,
}

struct AsyncRunner {
    // We keep a handle to the tokio runtime here to make sure
    // it will never be dropped while the DynamicPoolManager is alive,
    // In case we need to spin up some threads.
    #[cfg(feature = "tokio-runtime")]
    runtime_handle: tokio::runtime::Handle,
}

impl DynamicRunner for AsyncRunner {
    fn run_static(&self, park_timeout: Duration) -> ! {
        loop {
            for task in &POOL.receiver {
                trace!("static: running task");
                self.run(task);
            }

            trace!("static: empty queue, parking with timeout");
            thread::park_timeout(park_timeout);
        }
    }
    fn run_dynamic(&self, parker: &dyn Fn()) -> ! {
        loop {
            while let Ok(task) = POOL.receiver.try_recv() {
                trace!("dynamic thread: running task");
                self.run(task);
            }
            trace!(
                "dynamic thread: parking - {:?}",
                std::thread::current().id()
            );
            parker();
        }
    }
    fn run_standalone(&self) {
        while let Ok(task) = POOL.receiver.try_recv() {
            self.run(task);
        }
        trace!("standalone thread: quitting.");
    }
}

impl AsyncRunner {
    fn run(&self, task: LightProc) {
        #[cfg(feature = "tokio-runtime")]
        {
            self.runtime_handle.spawn_blocking(|| task.run());
        }
        #[cfg(not(feature = "tokio-runtime"))]
        {
            task.run();
        }
    }
}

static DYNAMIC_POOL_MANAGER: OnceCell<DynamicPoolManager> = OnceCell::new();

static POOL: Lazy<Pool> = Lazy::new(|| {
    #[cfg(feature = "tokio-runtime")]
    {
        let runner = Arc::new(AsyncRunner {
            // We use current() here instead of try_current()
            // because we want bastion to crash as soon as possible
            // if there is no available runtime.
            runtime_handle: tokio::runtime::Handle::current(),
        });

        DYNAMIC_POOL_MANAGER
            .set(DynamicPoolManager::new(*low_watermark() as usize, runner))
            .expect("couldn't create dynamic pool manager");
    }
    #[cfg(not(feature = "tokio-runtime"))]
    {
        let runner = Arc::new(AsyncRunner {});

        DYNAMIC_POOL_MANAGER
            .set(DynamicPoolManager::new(*low_watermark() as usize, runner))
            .expect("couldn't create dynamic pool manager");
    }

    DYNAMIC_POOL_MANAGER
        .get()
        .expect("couldn't get static pool manager")
        .initialize();

    let (sender, receiver) = unbounded();
    Pool { sender, receiver }
});