1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
use RealNumber;
use conv_types::{RealImpulseResponse, RealFrequencyResponse};
use num::traits::Zero;
use std::ops::{Add, Mul};
use super::WrappingIterator;
use simd_extensions::*;
use multicore_support::*;
use super::super::{array_to_complex, array_to_complex_mut, VoidResult, DspVec, Domain,
                   NumberSpace, ToSliceMut, GenDspVec, ToDspVector, DataDomain, Buffer, Vector,
                   RealNumberSpace, ErrorReason, InsertZerosOpsBuffered, ScaleOps, MetaData};
use super::fft;
use std::mem;
use num::complex::Complex;

/// Provides interpolation operations for real and complex data vectors.
/// # Unstable
/// This functionality has been recently added in order to find out if the definitions
/// are consistent. However the actual implementation is lacking tests.
pub trait InterpolationOps<S, T>
    where S: ToSliceMut<T>,
          T: RealNumber
{
    /// Interpolates `self` with the convolution function `function` by the real value
    /// `interpolation_factor`. InterpolationOps is done in time domain and the argument
    /// `conv_len` can be used to balance accuracy and computational performance.
    /// A `delay` can be used to delay or phase shift the vector.
    /// The `delay` considers `self.delta()`.
    ///
    /// The complexity of this `interpolatef` is `O(self.points() * conv_len)`,
    /// while for `interpolatei` it's `O(self.points() * log(self.points()))`. If computational
    /// performance is important you should therefore decide how large `conv_len` needs to be
    /// to yield the desired accuracy. If you compare `conv_len` to `log(self.points)` you should
    /// get a feeling for the expected performance difference. More important is however to do a
    /// test run to compare the speed of `interpolatef` and `interpolatei`.
    /// Together with the information that changing the vectors size change `log(self.points()`
    /// but not `conv_len` gives the indication that `interpolatef` performs faster for larger
    /// vectors while `interpolatei` performs faster for smaller vectors.
    fn interpolatef<B>(&mut self,
                       buffer: &mut B,
                       function: &RealImpulseResponse<T>,
                       interpolation_factor: T,
                       delay: T,
                       conv_len: usize)
        where B: Buffer<S, T>;

    /// Interpolates `self` with the convolution function `function` by the interger value
    /// `interpolation_factor`. InterpolationOps is done in in frequency domain.
    ///
    /// See the description of `interpolatef` for some basic performance considerations.
    /// # Failures
    /// TransRes may report the following `ErrorReason` members:
    ///
    /// 1. `ArgumentFunctionMustBeSymmetric`: if `!self.is_complex() && !function.is_symmetric()`
    ///    or in words if `self` is a real vector and `function` is asymmetric.
    ///    Converting the vector into a complex vector before the interpolation is one way
    ///    to resolve this error.
    fn interpolatei<B>(&mut self,
                       buffer: &mut B,
                       function: &RealFrequencyResponse<T>,
                       interpolation_factor: u32)
                       -> VoidResult
        where B: Buffer<S, T>;

    /// Decimates or downsamples `self`. `decimatei` is the inverse function to `interpolatei`.
    fn decimatei(&mut self, decimation_factor: u32, delay: u32);
}

/// Provides interpolation operations which are only applicable for real data vectors.
/// # Failures
/// All operations in this trait fail with `VectorMustBeReal` if the vector isn't in the
/// real number space.
pub trait RealInterpolationOps<S, T>
    where S: ToSliceMut<T>,
          T: RealNumber
{
    /// Piecewise cubic hermite interpolation between samples.
    /// # Unstable
    /// Algorithm might need to be revised.
    /// This operation and `interpolate_lin` might be merged into one function with an
    /// additional argument in future.
    fn interpolate_hermite<B>(&mut self, buffer: &mut B, interpolation_factor: T, delay: T)
        where B: Buffer<S, T>;

    /// Linear interpolation between samples.
    /// # Unstable
    /// This operation and `interpolate_hermite` might be merged into one function with an
    /// additional argument in future.
    fn interpolate_lin<B>(&mut self, buffer: &mut B, interpolation_factor: T, delay: T)
        where B: Buffer<S, T>;
}

fn interpolate_priv_scalar<T, TT>(temp: &mut [TT],
                                  data: &[TT],
                                  function: &RealImpulseResponse<T>,
                                  interpolation_factor: T,
                                  delay: T,
                                  conv_len: usize,
                                  multicore_settings: &MultiCoreSettings)
    where T: RealNumber,
          TT: Zero + Mul<Output = TT> + Copy + Send + Sync + From<T>
{
    Chunk::execute_with_range(Complexity::Large,
                              &multicore_settings,
                              temp,
                              1,
                              data,
                              move |dest_range, range, data| {
          let mut i = range.start as isize;
          for num in dest_range {
              let center = T::from(i).unwrap() / interpolation_factor;
              let rounded = center.floor();
              let iter = WrappingIterator::new(data,
                                               rounded.to_isize().unwrap() - conv_len as isize - 1,
                                               2 * conv_len + 1);
              let mut sum = TT::zero();
              let mut j = -T::from(conv_len).unwrap() - (center - rounded) + delay;
              for c in iter {
                  sum = sum + c * TT::from(function.calc(j));
                  j = j + T::one();
              }
              (*num) = sum;
              i += 1;
          }
    });
}

fn function_to_vectors<T>(function: &RealImpulseResponse<T>,
                          conv_len: usize,
                          complex_result: bool,
                          interpolation_factor: usize,
                          delay: T)
                          -> Vec<GenDspVec<Vec<T>, T>>
    where T: RealNumber
{
    let mut result = Vec::with_capacity(interpolation_factor);
    for shift in 0..interpolation_factor {
        let offset = T::from(shift).unwrap() / T::from(interpolation_factor).unwrap();
        result.push(function_to_vector(function, conv_len, complex_result, offset, delay));
    }

    result
}

fn function_to_vector<T>(function: &RealImpulseResponse<T>,
                         conv_len: usize,
                         complex_result: bool,
                         offset: T,
                         delay: T)
                         -> GenDspVec<Vec<T>, T>
    where T: RealNumber
{
    let step = if complex_result { 2 } else { 1 };
    let data_len = step * (2 * conv_len + 1);
    let mut imp_resp = vec!(T::zero(); data_len).to_gen_dsp_vec(complex_result, DataDomain::Time);
    let mut i = 0;
    let mut j = -(T::from(conv_len).unwrap() - T::one()) + delay;
    while i < data_len {
        let value = function.calc(j - offset);
        imp_resp[i] = value;
        i += step;
        j = j + T::one();
    }
    imp_resp
}

impl<S, T, N, D> DspVec<S, T, N, D>
    where S: ToSliceMut<T>,
          T: RealNumber,
          N: NumberSpace,
          D: Domain
{
    fn interpolate_priv_simd<TT, C, CMut, RMul, RSum, B>(&mut self,
                                                         buffer: &mut B,
                                                         function: &RealImpulseResponse<T>,
                                                         interpolation_factor: usize,
                                                         delay: T,
                                                         conv_len: usize,
                                                         new_len: usize,
                                                         convert: C,
                                                         convert_mut: CMut,
                                                         simd_mul: RMul,
                                                         simd_sum: RSum)
        where TT: Zero + Clone + From<T> + Copy + Add<Output = TT> + Mul<Output = TT> + Send + Sync,
              C: Fn(&[T]) -> &[TT],
              CMut: Fn(&mut [T]) -> &mut [TT],
              RMul: Fn(T::Reg, T::Reg) -> T::Reg + Sync,
              RSum: Fn(T::Reg) -> TT + Sync,
              B: Buffer<S, T>
    {
        let data_len = self.len();
        let mut temp = buffer.get(new_len);
        {
            let step = if self.is_complex() { 2 } else { 1 };
            let number_of_shifts = T::Reg::len() / step;
            let vectors = function_to_vectors(function,
                                              conv_len,
                                              self.is_complex(),
                                              interpolation_factor,
                                              delay);
            let mut shifts = Vec::with_capacity(vectors.len() * number_of_shifts);
            for vector in &vectors {
                let shifted_copies = DspVec::create_shifted_copies(vector);
                for shift in shifted_copies {
                    shifts.push(shift);
                }
            }

            let data = self.data.to_slice();
            let mut temp = temp.to_slice_mut();
            let dest = convert_mut(&mut temp[0..new_len]);
            let len = dest.len();
            let scalar_len = vectors[0].points() * interpolation_factor;
            let mut i = 0;
            {
                let data = convert(&data[0..data_len]);
                for num in &mut dest[0..scalar_len] {
                    (*num) = Self::interpolate_priv_simd_step(i,
                                                              interpolation_factor,
                                                              conv_len,
                                                              data,
                                                              &vectors);
                    i += 1;
                }
            }

            let (scalar_left, _, vectorization_length) =
                T::Reg::calc_data_alignment_reqs(&data[0..data_len]);
            let simd = T::Reg::array_to_regs(&data[scalar_left..vectorization_length]);
            // Length of a SIMD reg relative to the length of type T
            // which is 1 for real numbers or 2 for complex numbers
            let simd_len_in_t = T::Reg::len() / step;
            Chunk::execute_with_range(Complexity::Large,
                                      &self.multicore_settings,
                                      &mut dest[scalar_len..len - scalar_len],
                                      1,
                                      simd,
                                      move |dest_range, range, simd| {
                  let mut i = range.start + scalar_len;
                  for num in dest_range {
                      let rounded = (i + interpolation_factor - 1) / interpolation_factor;
                      let end = rounded + conv_len;
                      let simd_end = (end + simd_len_in_t - 1) / simd_len_in_t;
                      let simd_shift = end % simd_len_in_t;
                      let factor_shift = i % interpolation_factor;
                      // The reasoning for the next match is analog to the explanation in the
                      // create_shifted_copies function.
                      // We need the inverse of the mod unless we start with zero
                      let factor_shift = match factor_shift {
                          0 => 0,
                          x => interpolation_factor - x,
                      };
                      let selection = factor_shift * simd_len_in_t + simd_shift;
                      let shifted = &shifts[selection];
                      let mut sum = T::Reg::splat(T::zero());
                      let simd_iter = simd[simd_end - shifted.len()..simd_end].iter();
                      let iteration = simd_iter.zip(shifted);
                      for (this, other) in iteration {
                          sum = sum + simd_mul(*this, *other);
                      }
                      (*num) = simd_sum(sum);
                      i += 1;
                  }
            });

            i = len - scalar_len;
            {
                let data = convert(&data[0..data_len]);
                for num in &mut dest[len - scalar_len..len] {
                    (*num) = Self::interpolate_priv_simd_step(i,
                                                              interpolation_factor,
                                                              conv_len,
                                                              data,
                                                              &vectors);
                    i += 1;
                }
            }
        }
        self.valid_len = new_len;
        mem::swap(&mut temp, &mut self.data);
        buffer.free(temp);
    }

    #[inline]
    fn interpolate_priv_simd_step<TT>(i: usize,
                                      interpolation_factor: usize,
                                      conv_len: usize,
                                      data: &[TT],
                                      vectors: &[GenDspVec<Vec<T>, T>])
                                      -> TT
        where TT: Zero + Clone + From<T> + Copy + Add<Output = TT> + Mul<Output = TT>
    {
        let rounded = i / interpolation_factor;
        let iter = WrappingIterator::new(data,
                                         rounded as isize - conv_len as isize,
                                         2 * conv_len + 1);
        let vector = &vectors[i % interpolation_factor];
        let step = if vector.is_complex() { 2 } else { 1 };
        let mut sum = TT::zero();
        let mut j = 0;
        for c in iter {
            sum = sum + c * TT::from(vector[j]);
            j += step;
        }
        sum
    }
}

impl<S, T, N, D> InterpolationOps<S, T> for DspVec<S, T, N, D>
    where DspVec<S, T, N, D>: InsertZerosOpsBuffered<S, T> + ScaleOps<T>,
          S: ToSliceMut<T>,
          T: RealNumber,
          N: NumberSpace,
          D: Domain
{
    fn interpolatef<B>(&mut self,
                       buffer: &mut B,
                       function: &RealImpulseResponse<T>,
                       interpolation_factor: T,
                       delay: T,
                       conv_len: usize)
        where B: Buffer<S, T>
    {
        let delay = delay / self.delta;
        let len = self.len();
        let points_half = self.points() / 2;
        let conv_len = if conv_len > points_half {
            points_half
        } else {
            conv_len
        };
        let is_complex = self.is_complex();
        let new_len = (T::from(len).unwrap() * interpolation_factor).round().to_usize().unwrap();
        let new_len = new_len + new_len % 2;
        if conv_len <= 202 && new_len >= 2000 &&
           (interpolation_factor.round() - interpolation_factor).abs() < T::from(1e-6).unwrap() {
            let interpolation_factor = interpolation_factor.round().to_usize().unwrap();
            if self.is_complex() {
                return self.interpolate_priv_simd(buffer,
                                                  function,
                                                  interpolation_factor,
                                                  delay,
                                                  conv_len,
                                                  new_len,
                                                  |x| array_to_complex(x),
                                                  |x| array_to_complex_mut(x),
                                                  |x, y| x.mul_complex(y),
                                                  |x| x.sum_complex());
            } else {
                return self.interpolate_priv_simd(buffer,
                                                  function,
                                                  interpolation_factor,
                                                  delay,
                                                  conv_len,
                                                  new_len,
                                                  |x| x,
                                                  |x| x,
                                                  |x, y| x * y,
                                                  |x| x.sum_real());
            }
        } else if is_complex {
            let mut temp = buffer.get(new_len);
            {
                let data = self.data.to_slice();
                let data = &data[0..len];
                let temp = temp.to_slice_mut();
                let mut temp = array_to_complex_mut(&mut temp[0..new_len]);
                let data = array_to_complex(data);
                interpolate_priv_scalar(temp,
                                        data,
                                        function,
                                        interpolation_factor,
                                        delay,
                                        conv_len,
                                        &self.multicore_settings);
            }
            mem::swap(&mut temp, &mut self.data);
            buffer.free(temp);
        } else {
            let mut temp = buffer.get(new_len);
            {
                let data = self.data.to_slice();
                let data = &data[0..len];
                let temp = temp.to_slice_mut();
                interpolate_priv_scalar(temp,
                                        data,
                                        function,
                                        interpolation_factor,
                                        delay,
                                        conv_len,
                                        &self.multicore_settings);
            }
            mem::swap(&mut temp, &mut self.data);
            buffer.free(temp);
        }

        self.valid_len = new_len;
    }

    fn interpolatei<B>(&mut self,
                       buffer: &mut B,
                       function: &RealFrequencyResponse<T>,
                       interpolation_factor: u32)
                       -> VoidResult
        where B: Buffer<S, T>
    {
        if interpolation_factor <= 1 {
            return Ok(());
        }

        if !function.is_symmetric() && !self.is_complex() {
            return Err(ErrorReason::ArgumentFunctionMustBeSymmetric);
        }

        let is_complex = self.is_complex();

        if !self.is_complex() {
            self.zero_interleave_b(buffer, interpolation_factor * 2);
        } else {
            self.zero_interleave_b(buffer, interpolation_factor);
        }
        // Vector is always complex from here on

        fft(self, buffer, false); // fft
        self.swap_halves_priv(true); // fft shift
        let points = self.len() / 2;
        let interpolation_factorf = T::from(interpolation_factor).unwrap();
        self.multiply_function_priv(function.is_symmetric(),
                                    interpolation_factorf,
                                    |array| array_to_complex_mut(array),
                                    function,
                                    |f, x| Complex::<T>::new(f.calc(x), T::zero()));
        self.swap_halves_priv(false); // ifft shift
        fft(self, buffer, true); // ifft
        self.scale(T::one() / T::from(points).unwrap());
        if !is_complex {
            // Convert vector back into real number space
            self.pure_complex_to_real_operation_inplace(|x, _arg| x.re, ());
        }

        Ok(())
    }

    fn decimatei(&mut self, decimation_factor: u32, delay: u32) {
        let mut i = delay as usize;
        let mut j = 0;
        let len = self.len();
        let points = self.points();
        let is_complex = self.is_complex();
        let data = self.data.to_slice_mut();
        if is_complex {
            let mut data = array_to_complex_mut(&mut data[0..len]);
            let decimation_factor = decimation_factor as usize;
            while i < points {
                data[j] = data[i];
                i += decimation_factor;
                j += 1;
            }
            self.valid_len = j * 2;
        } else {
            let mut data = &mut data[0..len];
            let decimation_factor = decimation_factor as usize;
            while i < len {
                data[j] = data[i];
                i += decimation_factor;
                j += 1;
            }
            self.valid_len = j;
        }
    }
}

impl<S, T, N, D> RealInterpolationOps<S, T> for DspVec<S, T, N, D>
    where S: ToSliceMut<T>,
          T: RealNumber,
          N: RealNumberSpace,
          D: Domain
{
    fn interpolate_lin<B>(&mut self, buffer: &mut B, interpolation_factor: T, delay: T)
        where B: Buffer<S, T>
    {
        let data_len = self.len();
        let dest_len = (T::from(data_len - 1).unwrap() * interpolation_factor)
            .round()
            .to_usize()
            .unwrap() + 1;
        let mut temp = buffer.get(dest_len);
        {
            if self.is_complex() {
                self.valid_len = 0;
                return;
            }
            let data = self.data.to_slice();
            let mut temp = temp.to_slice_mut();
            let data = &data[0..data_len];
            let dest = &mut temp[0..dest_len];
            let mut i = T::zero();

            for num in &mut dest[0..dest_len - 1] {
                let rounded = i / interpolation_factor + delay;
                let beforef = rounded.floor();
                let before = beforef.to_usize().unwrap();
                let next = before + 1;
                let x0 = beforef;
                let y0 = data[before];
                let y1 = data[next];
                let x = rounded;
                (*num) = y0 + (y1 - y0) * (x - x0);
                i = i + T::one();
            }
            dest[dest_len - 1] = data[data_len - 1];
            self.valid_len = dest_len;
        }
        mem::swap(&mut self.data, &mut temp);
        buffer.free(temp);
    }

    fn interpolate_hermite<B>(&mut self, buffer: &mut B, interpolation_factor: T, delay: T)
        where B: Buffer<S, T>
    {
        let data_len = self.len();
        let dest_len = (T::from(data_len - 1).unwrap() * interpolation_factor)
            .round()
            .to_usize()
            .unwrap() + 1;
        let mut temp = buffer.get(dest_len);
        {
            if self.is_complex() {
                self.valid_len = 0;
                return;
            }
            let data = self.data.to_slice();
            let mut temp = temp.to_slice_mut();
            // Literature: http://paulbourke.net/miscellaneous/interpolation/
            let data = &data[0..data_len];
            let dest = &mut temp[0..dest_len];
            let mut i = T::zero();
            let start = ((T::one() - delay) * interpolation_factor).ceil().to_usize().unwrap();
            let end = start + 1;
            let half = T::from(0.5).unwrap();
            let one_point_five = T::from(1.5).unwrap();
            let two = T::from(2.0).unwrap();
            let two_point_five = T::from(2.5).unwrap();
            for num in &mut dest[0..start] {
                let rounded = i / interpolation_factor + delay;
                let beforef = rounded.floor();
                let before = beforef.to_usize().unwrap();
                assert_eq!(before, 0);
                let next = before + 1;
                let next_next = next + 1;
                let y1 = data[before];
                let y2 = data[next];
                let y3 = data[next_next];
                let x = rounded - beforef;
                let y0 = y1 - (y2 - y1);
                let x2 = x * x;
                let a0 = -half * y0 + one_point_five * y1 - one_point_five * y2 + half * y3;
                let a1 = y0 - two_point_five * y1 + two * y2 - half * y3;
                let a2 = -half * y0 + half * y2;
                let a3 = y1;

                (*num) = (a0 * x * x2) + (a1 * x2) + (a2 * x) + a3;
                i = i + T::one();
            }

            for num in &mut dest[start..dest_len - end] {
                let rounded = i / interpolation_factor + delay;
                let beforef = rounded.floor();
                let before = beforef.to_usize().unwrap();
                let before_before = before - 1;
                let next = before + 1;
                let next_next = next + 1;
                let y0 = data[before_before];
                let y1 = data[before];
                let y2 = data[next];
                let y3 = data[next_next];
                let x = rounded - beforef;
                let x2 = x * x;
                let a0 = -half * y0 + one_point_five * y1 - one_point_five * y2 + half * y3;
                let a1 = y0 - two_point_five * y1 + two * y2 - half * y3;
                let a2 = -half * y0 + half * y2;
                let a3 = y1;

                (*num) = (a0 * x * x2) + (a1 * x2) + (a2 * x) + a3;
                i = i + T::one();
            }

            for num in &mut dest[dest_len - end..dest_len] {
                let rounded = i / interpolation_factor + delay;
                let beforef = rounded.floor();
                let before = beforef.to_usize().unwrap();
                assert!(before + 2 >= data_len);
                let before_before = before - 1;
                let y0 = data[before_before];
                let y1 = data[before];
                let y2 = if before < data_len - 1 {
                    data[before + 1]
                } else {
                    y1 + (y1 - y0)
                };
                let y3 = if before < data_len - 2 {
                    data[before + 2]
                } else {
                    y2 + (y2 - y1)
                };
                let x = rounded - beforef;
                let x2 = x * x;
                let a0 = -half * y0 + one_point_five * y1 - one_point_five * y2 + half * y3;
                let a1 = y0 - two_point_five * y1 + two * y2 - half * y3;
                let a2 = -half * y0 + half * y2;
                let a3 = y1;

                (*num) = (a0 * x * x2) + (a1 * x2) + (a2 * x) + a3;
                i = i + T::one();
            }
        }
        self.valid_len = dest_len;
        mem::swap(&mut self.data, &mut temp);
        buffer.free(temp);
    }
}

#[cfg(test)]
mod tests {
    use conv_types::*;
    use super::super::super::*;
    use RealNumber;

    fn assert_eq_tol<T>(left: &[T], right: &[T], tol: T)
        where T: RealNumber
    {
        assert_eq!(left.len(), right.len());
        for i in 0..left.len() {
            if (left[i] - right[i]).abs() > tol {
                panic!("assertion failed: {:?} != {:?} at index {}", left, right, i);
            }
        }
    }

    #[test]
    fn interpolatei_sinc_test() {
        let len = 6;
        let mut time = vec!(0.0; 2 * len).to_complex_time_vec();
        time[len] = 1.0;
        let sinc: SincFunction<f32> = SincFunction::new();
        let mut buffer = SingleBuffer::new();
        time.interpolatei(&mut buffer, &sinc as &RealFrequencyResponse<f32>, 2).unwrap();
        let result = time.magnitude();
        let expected = [0.16666667,
                        0.044658206,
                        0.16666667,
                        0.16666667,
                        0.16666667,
                        0.6220085,
                        1.1666667,
                        0.6220085,
                        0.16666667,
                        0.16666667,
                        0.16666667,
                        0.044658206];
        assert_eq_tol(&result[..], &expected, 1e-4);
    }

    #[test]
    fn interpolatei_rc_test() {
        let len = 6;
        let mut time = vec!(0.0; 2 * len).to_complex_time_vec();
        time[len] = 1.0;
        let rc: RaisedCosineFunction<f32> = RaisedCosineFunction::new(0.4);
        let mut buffer = SingleBuffer::new();
        time.interpolatei(&mut buffer, &rc as &RealFrequencyResponse<f32>, 2).unwrap();
        let result = time.magnitude();
        let expected = [0.0,
                        0.038979173,
                        0.0000000062572014,
                        0.15530863,
                        0.000000015884869,
                        0.6163295,
                        1.0,
                        0.61632943,
                        0.0000000142918966,
                        0.15530863,
                        0.000000048099658,
                        0.038979173];
        assert_eq_tol(&result[..], &expected, 1e-4);
    }

    #[test]
    fn interpolatef_sinc_test() {
        let len = 6;
        let mut time = vec!(0.0; 2 * len).to_complex_time_vec();
        time[len] = 1.0;
        let sinc: SincFunction<f32> = SincFunction::new();
        let mut buffer = SingleBuffer::new();
        time.interpolatef(&mut buffer,
                          &sinc as &RealImpulseResponse<f32>,
                          2.0,
                          0.0,
                          len);
        let result = time.magnitude();
        let expected = [0.00000, 0.04466, 0.00000, 0.16667, 0.00000, 0.62201, 1.00000, 0.62201,
                        0.00000, 0.16667, 0.00000, 0.04466];
        assert_eq_tol(&result[..], &expected, 0.1);
    }

    #[test]
    fn interpolatef_delayed_sinc_test() {
        let len = 6;
        let mut time = vec!(0.0; 2 * len).to_complex_time_vec();
        time[len] = 1.0;
        let sinc: SincFunction<f32> = SincFunction::new();
        let mut buffer = SingleBuffer::new();
        time.interpolatef(&mut buffer,
                          &sinc as &RealImpulseResponse<f32>,
                          2.0,
                          1.0,
                          len);
        let result = time.magnitude();
        let expected = [0.00000, 0.00000, 0.00000, 0.04466, 0.00000, 0.16667, 0.00000, 0.62201,
                        1.00000, 0.62201, 0.00000, 0.16667];
        assert_eq_tol(&result[..], &expected, 0.1);
    }

    #[test]
    fn decimatei_test() {
        let mut time = vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]
            .to_complex_time_vec();
        time.decimatei(2, 1);
        let expected = [2.0, 3.0, 6.0, 7.0, 10.0, 11.0];
        assert_eq_tol(&time[..], &expected, 0.1);
    }

    #[test]
    fn hermit_spline_test() {
        let mut time = vec![-1.0, -2.0, -1.0, 0.0, 1.0, 3.0, 4.0].to_real_freq_vec();
        let mut buffer = SingleBuffer::new();
        time.interpolate_hermite(&mut buffer, 4.0, 0.0);
        let expected = [-1.0000, -1.4375, -1.7500, -1.9375, -2.0000, -1.8906, -1.6250, -1.2969,
                        -1.0000, -0.7500, -0.5000, -0.2500, 0.0, 0.2344, 0.4583, 0.7031, 1.0000,
                        1.4375, 2.0000, 2.5625, 3.0000, 3.3203, 3.6042, 3.8359, 4.0];
        assert_eq_tol(&time[4..expected.len() - 4],
                      &expected[4..expected.len() - 4],
                      6e-2);
    }

    #[test]
    fn hermit_spline_test_linear_increment() {
        let mut time = vec![-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0].to_real_freq_vec();
        let mut buffer = SingleBuffer::new();
        time.interpolate_hermite(&mut buffer, 3.0, 0.0);
        let expected = [-3.0, -2.666, -2.333, -2.0, -1.666, -1.333, -1.0, -0.666, -0.333, 0.0,
                        0.333, 0.666, 1.0, 1.333, 1.666, 2.0, 2.333, 2.666, 3.0];
        assert_eq_tol(&time[..], &expected, 5e-3);
    }

    #[test]
    fn linear_test() {
        let mut time = vec![-1.0, -2.0, -1.0, 0.0, 1.0, 3.0, 4.0].to_real_freq_vec();
        let mut buffer = SingleBuffer::new();
        time.interpolate_lin(&mut buffer, 4.0, 0.0);
        let expected = [-1.0000, -1.2500, -1.5000, -1.7500, -2.0000, -1.7500, -1.5000, -1.2500,
                        -1.0000, -0.7500, -0.5000, -0.2500, 0.0, 0.2500, 0.5000, 0.7500, 1.0000,
                        1.5000, 2.0000, 2.5000, 3.0000, 3.2500, 3.5000, 3.7500, 4.0];
        assert_eq_tol(&time[..], &expected, 0.1);
    }
}