1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*!
Contains everything related to vertex sources.

When you draw, you need to pass one or several sources of vertex attributes. This is done with
the first parameter to the `draw` function.

## Vertex

The main trait of this module is `Vertex`, which must be implemented on structs whose instances
describe individual vertices. The trait is unsafe to implement, so you are encouraged to use the
`implement_vertex!` macro instead:

```
# #[macro_use]
# extern crate glium;
# extern crate glutin;
# fn main() {
#[derive(Copy, Clone)]
struct MyVertex {
    position: [f32; 3],
    texcoords: [f32; 2],
}

// you must pass the list of members to the macro
implement_vertex!(MyVertex, position, texcoords);
# }
```

## Vertex buffer

Once you have a struct that implements the `Vertex` trait, you can build an array of vertices and
upload it to the video memory by creating a `VertexBuffer`.

```no_run
# let display: glium::Display = unsafe { ::std::mem::uninitialized() };
# #[derive(Copy, Clone)]
# struct MyVertex {
#     position: [f32; 3],
#     texcoords: [f32; 2],
# }
# impl glium::vertex::Vertex for MyVertex {
#     fn build_bindings() -> glium::vertex::VertexFormat { unimplemented!() }
# }
let data = &[
    MyVertex {
        position: [0.0, 0.0, 0.4],
        texcoords: [0.0, 1.0]
    },
    MyVertex {
        position: [12.0, 4.5, -1.8],
        texcoords: [1.0, 0.5]
    },
    MyVertex {
        position: [-7.124, 0.1, 0.0],
        texcoords: [0.0, 0.4]
    },
];

let vertex_buffer = glium::vertex::VertexBuffer::new(&display, data);
```

## Drawing

When you draw, you can pass either a single vertex source or a tuple of multiple sources.
Each source can be:

 - A reference to a `VertexBuffer`.
 - A slice of a vertex buffer, by calling `vertex_buffer.slice(start .. end).unwrap()`.
 - A vertex buffer where each element corresponds to an instance, by
   calling `vertex_buffer.per_instance()`.
 - The same with a slice, by calling `vertex_buffer.slice(start .. end).unwrap().per_instance()`.
 - A marker indicating a number of vertex sources, with `glium::vertex::EmptyVertexAttributes`.
 - A marker indicating a number of instances, with `glium::vertex::EmptyInstanceAttributes`.

```no_run
# use glium::Surface;
# let display: glium::Display = unsafe { ::std::mem::uninitialized() };
# #[derive(Copy, Clone)]
# struct MyVertex { position: [f32; 3], texcoords: [f32; 2], }
# impl glium::vertex::Vertex for MyVertex {
#     fn build_bindings() -> glium::vertex::VertexFormat { unimplemented!() }
# }
# let program: glium::program::Program = unsafe { ::std::mem::uninitialized() };
# let indices = glium::index::NoIndices(glium::index::PrimitiveType::TrianglesList);
# let uniforms = glium::uniforms::EmptyUniforms;
# let vertex_buffer: glium::vertex::VertexBuffer<MyVertex> = unsafe { ::std::mem::uninitialized() };
# let vertex_buffer2: glium::vertex::VertexBuffer<MyVertex> = unsafe { ::std::mem::uninitialized() };
# let mut frame = display.draw();
// drawing with a single vertex buffer
frame.draw(&vertex_buffer, &indices, &program, &uniforms, &Default::default()).unwrap();

// drawing with two parallel vertex buffers
frame.draw((&vertex_buffer, &vertex_buffer2), &indices, &program,
           &uniforms, &Default::default()).unwrap();

// drawing without a vertex source
frame.draw(glium::vertex::EmptyVertexAttributes { len: 12 }, &indices, &program,
           &uniforms, &Default::default()).unwrap();

// drawing a slice of a vertex buffer
frame.draw(vertex_buffer.slice(6 .. 24).unwrap(), &indices, &program,
           &uniforms, &Default::default()).unwrap();

// drawing slices of two vertex buffers
frame.draw((vertex_buffer.slice(6 .. 24).unwrap(), vertex_buffer2.slice(128 .. 146).unwrap()),
           &indices, &program, &uniforms, &Default::default()).unwrap();

// treating `vertex_buffer2` as a source of attributes per-instance instead of per-vertex
frame.draw((&vertex_buffer, vertex_buffer2.per_instance().unwrap()), &indices,
           &program, &uniforms, &Default::default()).unwrap();

// instancing without any per-instance attribute
frame.draw((&vertex_buffer, glium::vertex::EmptyInstanceAttributes { len: 36 }), &indices,
           &program, &uniforms, &Default::default()).unwrap();
```

Note that if you use `index::EmptyIndices` as indices the length of all vertex sources must
be the same, or a `DrawError::VerticesSourcesLengthMismatch` will be produced.

In all situation, the length of all per-instance sources must match, or
`DrawError::InstancesCountMismatch` will be returned.

# Transform feedback

Transform feedback allows you to write in a buffer the list of primitives that are generated by
the GPU.

To use it, you must first create a `TransformFeedbackSession` with
`TransformFeedbackSession::new()`. This function requires you to pass a buffer of the correct
type and a program. Then you must pass the `&TransformFeedbackSession` to the draw parameters.
The program you use when drawing must be the same as you the one you created the session
with, or else you will get an error.

*/
use std::iter::Chain;
use std::option::IntoIter;

pub use self::buffer::{VertexBuffer, VertexBufferAny};
pub use self::buffer::VertexBufferSlice;
pub use self::buffer::CreationError as BufferCreationError;
pub use self::format::{AttributeType, VertexFormat};
pub use self::transform_feedback::{is_transform_feedback_supported, TransformFeedbackSession};

use buffer::BufferAnySlice;
use CapabilitiesSource;

mod buffer;
mod format;
mod transform_feedback;

/// Describes the source to use for the vertices when drawing.
#[derive(Clone)]
pub enum VerticesSource<'a> {
    /// A buffer uploaded in the video memory.
    ///
    /// The second parameter is the number of vertices in the buffer.
    ///
    /// The third parameter tells whether or not this buffer is "per instance" (true) or
    /// "per vertex" (false).
    VertexBuffer(BufferAnySlice<'a>, &'a VertexFormat, bool),

    /// A marker indicating a "phantom list of attributes".
    Marker {
        /// Number of attributes.
        len: usize,

        /// Whether or not this buffer is "per instance" (true) or "per vertex" (false).
        per_instance: bool,
    },
}

/// Marker that can be passed instead of a buffer to indicate an empty list of buffers.
pub struct EmptyVertexAttributes {
    /// Number of phantom vertices.
    pub len: usize,
}

impl<'a> Into<VerticesSource<'a>> for EmptyVertexAttributes {
    #[inline]
    fn into(self) -> VerticesSource<'a> {
        VerticesSource::Marker { len: self.len, per_instance: false }
    }
}

/// Marker that can be passed instead of a buffer to indicate an empty list of buffers.
pub struct EmptyInstanceAttributes {
    /// Number of phantom vertices.
    pub len: usize,
}

impl<'a> Into<VerticesSource<'a>> for EmptyInstanceAttributes {
    #[inline]
    fn into(self) -> VerticesSource<'a> {
        VerticesSource::Marker { len: self.len, per_instance: true }
    }
}

/// Marker that instructs glium that the buffer is to be used per instance.
pub struct PerInstance<'a>(BufferAnySlice<'a>, &'a VertexFormat);

impl<'a> Into<VerticesSource<'a>> for PerInstance<'a> {
    #[inline]
    fn into(self) -> VerticesSource<'a> {
        VerticesSource::VertexBuffer(self.0, self.1, true)
    }
}

/// Objects that describe multiple vertex sources.
pub trait MultiVerticesSource<'a> {
    /// Iterator that enumerates each source.
    type Iterator: Iterator<Item = VerticesSource<'a>>;

    /// Iterates over the `VerticesSource`.
    fn iter(self) -> Self::Iterator;
}

impl<'a, T> MultiVerticesSource<'a> for T
    where T: Into<VerticesSource<'a>>
{
    type Iterator = IntoIter<VerticesSource<'a>>;

    #[inline]
    fn iter(self) -> IntoIter<VerticesSource<'a>> {
        Some(self.into()).into_iter()
    }
}

macro_rules! impl_for_tuple {
    ($t:ident) => (
        impl<'a, $t> MultiVerticesSource<'a> for ($t,)
            where $t: Into<VerticesSource<'a>>
        {
            type Iterator = IntoIter<VerticesSource<'a>>;

            #[inline]
            fn iter(self) -> IntoIter<VerticesSource<'a>> {
                Some(self.0.into()).into_iter()
            }
        }
    );

    ($t1:ident, $t2:ident) => (
        #[allow(non_snake_case)]
        impl<'a, $t1, $t2> MultiVerticesSource<'a> for ($t1, $t2)
            where $t1: Into<VerticesSource<'a>>, $t2: Into<VerticesSource<'a>>
        {
            type Iterator = Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator,
                                  <($t2,) as MultiVerticesSource<'a>>::Iterator>;

            #[inline]
            fn iter(self) -> Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator,
                                   <($t2,) as MultiVerticesSource<'a>>::Iterator>
            {
                let ($t1, $t2) = self;
                Some($t1.into()).into_iter().chain(($t2,).iter())
            }
        }

        impl_for_tuple!($t2);
    );

    ($t1:ident, $($t2:ident),+) => (
        #[allow(non_snake_case)]
        impl<'a, $t1, $($t2),+> MultiVerticesSource<'a> for ($t1, $($t2),+)
            where $t1: Into<VerticesSource<'a>>, $($t2: Into<VerticesSource<'a>>),+
        {
            type Iterator = Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator,
                                  <($($t2),+) as MultiVerticesSource<'a>>::Iterator>;

            #[inline]
            fn iter(self) -> Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator,
                                  <($($t2),+) as MultiVerticesSource<'a>>::Iterator>
            {
                let ($t1, $($t2),+) = self;
                Some($t1.into()).into_iter().chain(($($t2),+).iter())
            }
        }

        impl_for_tuple!($($t2),+);
    );
}

impl_for_tuple!(A, B, C, D, E, F, G);

/// Trait for structures that represent a vertex.
///
/// Instead of implementing this trait yourself, it is recommended to use the `implement_vertex!`
/// macro instead.
// TODO: this should be `unsafe`, but that would break the syntax extension
pub trait Vertex: Copy + Sized {
    /// Builds the `VertexFormat` representing the layout of this element.
    fn build_bindings() -> VertexFormat;

    /// Returns true if the backend supports this vertex format.
    fn is_supported<C: ?Sized>(caps: &C) -> bool where C: CapabilitiesSource {
        let format = Self::build_bindings();

        for &(_, _, ref ty, _) in format.iter() {
            if !ty.is_supported(caps) {
                return false;
            }
        }

        true
    }
}

/// Trait for types that can be used as vertex attributes.
pub unsafe trait Attribute: Sized {
    /// Get the type of data.
    fn get_type() -> AttributeType;

    /// Returns true if the backend supports this type of attribute.
    #[inline]
    fn is_supported<C: ?Sized>(caps: &C) -> bool where C: CapabilitiesSource {
        Self::get_type().is_supported(caps)
    }
}