#[non_exhaustive]
pub struct XavcHdProfileSettings { pub bitrate_class: Option<XavcHdProfileBitrateClass>, pub flicker_adaptive_quantization: Option<XavcFlickerAdaptiveQuantization>, pub gop_b_reference: Option<XavcGopBReference>, pub gop_closed_cadence: Option<i32>, pub hrd_buffer_size: Option<i32>, pub interlace_mode: Option<XavcInterlaceMode>, pub quality_tuning_level: Option<XavcHdProfileQualityTuningLevel>, pub slices: Option<i32>, pub telecine: Option<XavcHdProfileTelecine>, }
Expand description

Required when you set Profile to the value XAVC_HD.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§bitrate_class: Option<XavcHdProfileBitrateClass>

Specify the XAVC HD (Long GOP) Bitrate Class to set the bitrate of your output. Outputs of the same class have similar image quality over the operating points that are valid for that class.

§flicker_adaptive_quantization: Option<XavcFlickerAdaptiveQuantization>

The best way to set up adaptive quantization is to keep the default value, Auto, for the setting Adaptive quantization. When you do so, MediaConvert automatically applies the best types of quantization for your video content. Include this setting in your JSON job specification only when you choose to change the default value for Adaptive quantization. Enable this setting to have the encoder reduce I-frame pop. I-frame pop appears as a visual flicker that can arise when the encoder saves bits by copying some macroblocks many times from frame to frame, and then refreshes them at the I-frame. When you enable this setting, the encoder updates these macroblocks slightly more often to smooth out the flicker. This setting is disabled by default. Related setting: In addition to enabling this setting, you must also set Adaptive quantization to a value other than Off or Auto. Use Adaptive quantization to adjust the degree of smoothing that Flicker adaptive quantization provides.

§gop_b_reference: Option<XavcGopBReference>

Specify whether the encoder uses B-frames as reference frames for other pictures in the same GOP. Choose Allow to allow the encoder to use B-frames as reference frames. Choose Don’t allow to prevent the encoder from using B-frames as reference frames.

§gop_closed_cadence: Option<i32>

Frequency of closed GOPs. In streaming applications, it is recommended that this be set to 1 so a decoder joining mid-stream will receive an IDR frame as quickly as possible. Setting this value to 0 will break output segmenting.

§hrd_buffer_size: Option<i32>

Specify the size of the buffer that MediaConvert uses in the HRD buffer model for this output. Specify this value in bits; for example, enter five megabits as 5000000. When you don’t set this value, or you set it to zero, MediaConvert calculates the default by doubling the bitrate of this output point.

§interlace_mode: Option<XavcInterlaceMode>

Choose the scan line type for the output. Keep the default value, Progressive to create a progressive output, regardless of the scan type of your input. Use Top field first or Bottom field first to create an output that’s interlaced with the same field polarity throughout. Use Follow, default top or Follow, default bottom to produce outputs with the same field polarity as the source. For jobs that have multiple inputs, the output field polarity might change over the course of the output. Follow behavior depends on the input scan type. If the source is interlaced, the output will be interlaced with the same polarity as the source. If the source is progressive, the output will be interlaced with top field bottom field first, depending on which of the Follow options you choose.

§quality_tuning_level: Option<XavcHdProfileQualityTuningLevel>

Optional. Use Quality tuning level to choose how you want to trade off encoding speed for output video quality. The default behavior is faster, lower quality, single-pass encoding.

§slices: Option<i32>

Number of slices per picture. Must be less than or equal to the number of macroblock rows for progressive pictures, and less than or equal to half the number of macroblock rows for interlaced pictures.

§telecine: Option<XavcHdProfileTelecine>

Ignore this setting unless you set Frame rate (framerateNumerator divided by framerateDenominator) to 29.970. If your input framerate is 23.976, choose Hard. Otherwise, keep the default value None. For more information, see https://docs.aws.amazon.com/mediaconvert/latest/ug/working-with-telecine-and-inverse-telecine.html.

Implementations§

source§

impl XavcHdProfileSettings

source

pub fn bitrate_class(&self) -> Option<&XavcHdProfileBitrateClass>

Specify the XAVC HD (Long GOP) Bitrate Class to set the bitrate of your output. Outputs of the same class have similar image quality over the operating points that are valid for that class.

source

pub fn flicker_adaptive_quantization( &self ) -> Option<&XavcFlickerAdaptiveQuantization>

The best way to set up adaptive quantization is to keep the default value, Auto, for the setting Adaptive quantization. When you do so, MediaConvert automatically applies the best types of quantization for your video content. Include this setting in your JSON job specification only when you choose to change the default value for Adaptive quantization. Enable this setting to have the encoder reduce I-frame pop. I-frame pop appears as a visual flicker that can arise when the encoder saves bits by copying some macroblocks many times from frame to frame, and then refreshes them at the I-frame. When you enable this setting, the encoder updates these macroblocks slightly more often to smooth out the flicker. This setting is disabled by default. Related setting: In addition to enabling this setting, you must also set Adaptive quantization to a value other than Off or Auto. Use Adaptive quantization to adjust the degree of smoothing that Flicker adaptive quantization provides.

source

pub fn gop_b_reference(&self) -> Option<&XavcGopBReference>

Specify whether the encoder uses B-frames as reference frames for other pictures in the same GOP. Choose Allow to allow the encoder to use B-frames as reference frames. Choose Don’t allow to prevent the encoder from using B-frames as reference frames.

source

pub fn gop_closed_cadence(&self) -> Option<i32>

Frequency of closed GOPs. In streaming applications, it is recommended that this be set to 1 so a decoder joining mid-stream will receive an IDR frame as quickly as possible. Setting this value to 0 will break output segmenting.

source

pub fn hrd_buffer_size(&self) -> Option<i32>

Specify the size of the buffer that MediaConvert uses in the HRD buffer model for this output. Specify this value in bits; for example, enter five megabits as 5000000. When you don’t set this value, or you set it to zero, MediaConvert calculates the default by doubling the bitrate of this output point.

source

pub fn interlace_mode(&self) -> Option<&XavcInterlaceMode>

Choose the scan line type for the output. Keep the default value, Progressive to create a progressive output, regardless of the scan type of your input. Use Top field first or Bottom field first to create an output that’s interlaced with the same field polarity throughout. Use Follow, default top or Follow, default bottom to produce outputs with the same field polarity as the source. For jobs that have multiple inputs, the output field polarity might change over the course of the output. Follow behavior depends on the input scan type. If the source is interlaced, the output will be interlaced with the same polarity as the source. If the source is progressive, the output will be interlaced with top field bottom field first, depending on which of the Follow options you choose.

source

pub fn quality_tuning_level(&self) -> Option<&XavcHdProfileQualityTuningLevel>

Optional. Use Quality tuning level to choose how you want to trade off encoding speed for output video quality. The default behavior is faster, lower quality, single-pass encoding.

source

pub fn slices(&self) -> Option<i32>

Number of slices per picture. Must be less than or equal to the number of macroblock rows for progressive pictures, and less than or equal to half the number of macroblock rows for interlaced pictures.

source

pub fn telecine(&self) -> Option<&XavcHdProfileTelecine>

Ignore this setting unless you set Frame rate (framerateNumerator divided by framerateDenominator) to 29.970. If your input framerate is 23.976, choose Hard. Otherwise, keep the default value None. For more information, see https://docs.aws.amazon.com/mediaconvert/latest/ug/working-with-telecine-and-inverse-telecine.html.

source§

impl XavcHdProfileSettings

source

pub fn builder() -> XavcHdProfileSettingsBuilder

Creates a new builder-style object to manufacture XavcHdProfileSettings.

Trait Implementations§

source§

impl Clone for XavcHdProfileSettings

source§

fn clone(&self) -> XavcHdProfileSettings

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for XavcHdProfileSettings

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl PartialEq for XavcHdProfileSettings

source§

fn eq(&self, other: &XavcHdProfileSettings) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for XavcHdProfileSettings

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more