Struct aws_sdk_mediaconvert::types::ProresSettings

source ·
#[non_exhaustive]
pub struct ProresSettings {
Show 13 fields pub chroma_sampling: Option<ProresChromaSampling>, pub codec_profile: Option<ProresCodecProfile>, pub framerate_control: Option<ProresFramerateControl>, pub framerate_conversion_algorithm: Option<ProresFramerateConversionAlgorithm>, pub framerate_denominator: Option<i32>, pub framerate_numerator: Option<i32>, pub interlace_mode: Option<ProresInterlaceMode>, pub par_control: Option<ProresParControl>, pub par_denominator: Option<i32>, pub par_numerator: Option<i32>, pub scan_type_conversion_mode: Option<ProresScanTypeConversionMode>, pub slow_pal: Option<ProresSlowPal>, pub telecine: Option<ProresTelecine>,
}
Expand description

Required when you set Codec to the value PRORES.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§chroma_sampling: Option<ProresChromaSampling>

This setting applies only to ProRes 4444 and ProRes 4444 XQ outputs that you create from inputs that use 4:4:4 chroma sampling. Set Preserve 4:4:4 sampling to allow outputs to also use 4:4:4 chroma sampling. You must specify a value for this setting when your output codec profile supports 4:4:4 chroma sampling. Related Settings: For Apple ProRes outputs with 4:4:4 chroma sampling: Choose Preserve 4:4:4 sampling. Use when your input has 4:4:4 chroma sampling and your output codec Profile is Apple ProRes 4444 or 4444 XQ. Note that when you choose Preserve 4:4:4 sampling, you cannot include any of the following Preprocessors: Dolby Vision, HDR10+, or Noise reducer.

§codec_profile: Option<ProresCodecProfile>

Use Profile to specify the type of Apple ProRes codec to use for this output.

§framerate_control: Option<ProresFramerateControl>

If you are using the console, use the Framerate setting to specify the frame rate for this output. If you want to keep the same frame rate as the input video, choose Follow source. If you want to do frame rate conversion, choose a frame rate from the dropdown list or choose Custom. The framerates shown in the dropdown list are decimal approximations of fractions. If you choose Custom, specify your frame rate as a fraction.

§framerate_conversion_algorithm: Option<ProresFramerateConversionAlgorithm>

Choose the method that you want MediaConvert to use when increasing or decreasing the frame rate. For numerically simple conversions, such as 60 fps to 30 fps: We recommend that you keep the default value, Drop duplicate. For numerically complex conversions, to avoid stutter: Choose Interpolate. This results in a smooth picture, but might introduce undesirable video artifacts. For complex frame rate conversions, especially if your source video has already been converted from its original cadence: Choose FrameFormer to do motion-compensated interpolation. FrameFormer uses the best conversion method frame by frame. Note that using FrameFormer increases the transcoding time and incurs a significant add-on cost. When you choose FrameFormer, your input video resolution must be at least 128x96.

§framerate_denominator: Option<i32>

When you use the API for transcode jobs that use frame rate conversion, specify the frame rate as a fraction. For example, 24000 / 1001 = 23.976 fps. Use FramerateDenominator to specify the denominator of this fraction. In this example, use 1001 for the value of FramerateDenominator. When you use the console for transcode jobs that use frame rate conversion, provide the value as a decimal number for Framerate. In this example, specify 23.976.

§framerate_numerator: Option<i32>

When you use the API for transcode jobs that use frame rate conversion, specify the frame rate as a fraction. For example, 24000 / 1001 = 23.976 fps. Use FramerateNumerator to specify the numerator of this fraction. In this example, use 24000 for the value of FramerateNumerator. When you use the console for transcode jobs that use frame rate conversion, provide the value as a decimal number for Framerate. In this example, specify 23.976.

§interlace_mode: Option<ProresInterlaceMode>

Choose the scan line type for the output. Keep the default value, Progressive to create a progressive output, regardless of the scan type of your input. Use Top field first or Bottom field first to create an output that’s interlaced with the same field polarity throughout. Use Follow, default top or Follow, default bottom to produce outputs with the same field polarity as the source. For jobs that have multiple inputs, the output field polarity might change over the course of the output. Follow behavior depends on the input scan type. If the source is interlaced, the output will be interlaced with the same polarity as the source. If the source is progressive, the output will be interlaced with top field bottom field first, depending on which of the Follow options you choose.

§par_control: Option<ProresParControl>

Optional. Specify how the service determines the pixel aspect ratio (PAR) for this output. The default behavior, Follow source, uses the PAR from your input video for your output. To specify a different PAR, choose any value other than Follow source. When you choose SPECIFIED for this setting, you must also specify values for the parNumerator and parDenominator settings.

§par_denominator: Option<i32>

Required when you set Pixel aspect ratio to SPECIFIED. On the console, this corresponds to any value other than Follow source. When you specify an output pixel aspect ratio (PAR) that is different from your input video PAR, provide your output PAR as a ratio. For example, for D1/DV NTSC widescreen, you would specify the ratio 40:33. In this example, the value for parDenominator is 33.

§par_numerator: Option<i32>

Required when you set Pixel aspect ratio to SPECIFIED. On the console, this corresponds to any value other than Follow source. When you specify an output pixel aspect ratio (PAR) that is different from your input video PAR, provide your output PAR as a ratio. For example, for D1/DV NTSC widescreen, you would specify the ratio 40:33. In this example, the value for parNumerator is 40.

§scan_type_conversion_mode: Option<ProresScanTypeConversionMode>

Use this setting for interlaced outputs, when your output frame rate is half of your input frame rate. In this situation, choose Optimized interlacing to create a better quality interlaced output. In this case, each progressive frame from the input corresponds to an interlaced field in the output. Keep the default value, Basic interlacing, for all other output frame rates. With basic interlacing, MediaConvert performs any frame rate conversion first and then interlaces the frames. When you choose Optimized interlacing and you set your output frame rate to a value that isn’t suitable for optimized interlacing, MediaConvert automatically falls back to basic interlacing. Required settings: To use optimized interlacing, you must set Telecine to None or Soft. You can’t use optimized interlacing for hard telecine outputs. You must also set Interlace mode to a value other than Progressive.

§slow_pal: Option<ProresSlowPal>

Ignore this setting unless your input frame rate is 23.976 or 24 frames per second (fps). Enable slow PAL to create a 25 fps output. When you enable slow PAL, MediaConvert relabels the video frames to 25 fps and resamples your audio to keep it synchronized with the video. Note that enabling this setting will slightly reduce the duration of your video. Required settings: You must also set Framerate to 25.

§telecine: Option<ProresTelecine>

When you do frame rate conversion from 23.976 frames per second (fps) to 29.97 fps, and your output scan type is interlaced, you can optionally enable hard telecine to create a smoother picture. When you keep the default value, None, MediaConvert does a standard frame rate conversion to 29.97 without doing anything with the field polarity to create a smoother picture.

Implementations§

source§

impl ProresSettings

source

pub fn chroma_sampling(&self) -> Option<&ProresChromaSampling>

This setting applies only to ProRes 4444 and ProRes 4444 XQ outputs that you create from inputs that use 4:4:4 chroma sampling. Set Preserve 4:4:4 sampling to allow outputs to also use 4:4:4 chroma sampling. You must specify a value for this setting when your output codec profile supports 4:4:4 chroma sampling. Related Settings: For Apple ProRes outputs with 4:4:4 chroma sampling: Choose Preserve 4:4:4 sampling. Use when your input has 4:4:4 chroma sampling and your output codec Profile is Apple ProRes 4444 or 4444 XQ. Note that when you choose Preserve 4:4:4 sampling, you cannot include any of the following Preprocessors: Dolby Vision, HDR10+, or Noise reducer.

source

pub fn codec_profile(&self) -> Option<&ProresCodecProfile>

Use Profile to specify the type of Apple ProRes codec to use for this output.

source

pub fn framerate_control(&self) -> Option<&ProresFramerateControl>

If you are using the console, use the Framerate setting to specify the frame rate for this output. If you want to keep the same frame rate as the input video, choose Follow source. If you want to do frame rate conversion, choose a frame rate from the dropdown list or choose Custom. The framerates shown in the dropdown list are decimal approximations of fractions. If you choose Custom, specify your frame rate as a fraction.

source

pub fn framerate_conversion_algorithm( &self ) -> Option<&ProresFramerateConversionAlgorithm>

Choose the method that you want MediaConvert to use when increasing or decreasing the frame rate. For numerically simple conversions, such as 60 fps to 30 fps: We recommend that you keep the default value, Drop duplicate. For numerically complex conversions, to avoid stutter: Choose Interpolate. This results in a smooth picture, but might introduce undesirable video artifacts. For complex frame rate conversions, especially if your source video has already been converted from its original cadence: Choose FrameFormer to do motion-compensated interpolation. FrameFormer uses the best conversion method frame by frame. Note that using FrameFormer increases the transcoding time and incurs a significant add-on cost. When you choose FrameFormer, your input video resolution must be at least 128x96.

source

pub fn framerate_denominator(&self) -> Option<i32>

When you use the API for transcode jobs that use frame rate conversion, specify the frame rate as a fraction. For example, 24000 / 1001 = 23.976 fps. Use FramerateDenominator to specify the denominator of this fraction. In this example, use 1001 for the value of FramerateDenominator. When you use the console for transcode jobs that use frame rate conversion, provide the value as a decimal number for Framerate. In this example, specify 23.976.

source

pub fn framerate_numerator(&self) -> Option<i32>

When you use the API for transcode jobs that use frame rate conversion, specify the frame rate as a fraction. For example, 24000 / 1001 = 23.976 fps. Use FramerateNumerator to specify the numerator of this fraction. In this example, use 24000 for the value of FramerateNumerator. When you use the console for transcode jobs that use frame rate conversion, provide the value as a decimal number for Framerate. In this example, specify 23.976.

source

pub fn interlace_mode(&self) -> Option<&ProresInterlaceMode>

Choose the scan line type for the output. Keep the default value, Progressive to create a progressive output, regardless of the scan type of your input. Use Top field first or Bottom field first to create an output that’s interlaced with the same field polarity throughout. Use Follow, default top or Follow, default bottom to produce outputs with the same field polarity as the source. For jobs that have multiple inputs, the output field polarity might change over the course of the output. Follow behavior depends on the input scan type. If the source is interlaced, the output will be interlaced with the same polarity as the source. If the source is progressive, the output will be interlaced with top field bottom field first, depending on which of the Follow options you choose.

source

pub fn par_control(&self) -> Option<&ProresParControl>

Optional. Specify how the service determines the pixel aspect ratio (PAR) for this output. The default behavior, Follow source, uses the PAR from your input video for your output. To specify a different PAR, choose any value other than Follow source. When you choose SPECIFIED for this setting, you must also specify values for the parNumerator and parDenominator settings.

source

pub fn par_denominator(&self) -> Option<i32>

Required when you set Pixel aspect ratio to SPECIFIED. On the console, this corresponds to any value other than Follow source. When you specify an output pixel aspect ratio (PAR) that is different from your input video PAR, provide your output PAR as a ratio. For example, for D1/DV NTSC widescreen, you would specify the ratio 40:33. In this example, the value for parDenominator is 33.

source

pub fn par_numerator(&self) -> Option<i32>

Required when you set Pixel aspect ratio to SPECIFIED. On the console, this corresponds to any value other than Follow source. When you specify an output pixel aspect ratio (PAR) that is different from your input video PAR, provide your output PAR as a ratio. For example, for D1/DV NTSC widescreen, you would specify the ratio 40:33. In this example, the value for parNumerator is 40.

source

pub fn scan_type_conversion_mode(&self) -> Option<&ProresScanTypeConversionMode>

Use this setting for interlaced outputs, when your output frame rate is half of your input frame rate. In this situation, choose Optimized interlacing to create a better quality interlaced output. In this case, each progressive frame from the input corresponds to an interlaced field in the output. Keep the default value, Basic interlacing, for all other output frame rates. With basic interlacing, MediaConvert performs any frame rate conversion first and then interlaces the frames. When you choose Optimized interlacing and you set your output frame rate to a value that isn’t suitable for optimized interlacing, MediaConvert automatically falls back to basic interlacing. Required settings: To use optimized interlacing, you must set Telecine to None or Soft. You can’t use optimized interlacing for hard telecine outputs. You must also set Interlace mode to a value other than Progressive.

source

pub fn slow_pal(&self) -> Option<&ProresSlowPal>

Ignore this setting unless your input frame rate is 23.976 or 24 frames per second (fps). Enable slow PAL to create a 25 fps output. When you enable slow PAL, MediaConvert relabels the video frames to 25 fps and resamples your audio to keep it synchronized with the video. Note that enabling this setting will slightly reduce the duration of your video. Required settings: You must also set Framerate to 25.

source

pub fn telecine(&self) -> Option<&ProresTelecine>

When you do frame rate conversion from 23.976 frames per second (fps) to 29.97 fps, and your output scan type is interlaced, you can optionally enable hard telecine to create a smoother picture. When you keep the default value, None, MediaConvert does a standard frame rate conversion to 29.97 without doing anything with the field polarity to create a smoother picture.

source§

impl ProresSettings

source

pub fn builder() -> ProresSettingsBuilder

Creates a new builder-style object to manufacture ProresSettings.

Trait Implementations§

source§

impl Clone for ProresSettings

source§

fn clone(&self) -> ProresSettings

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for ProresSettings

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl PartialEq for ProresSettings

source§

fn eq(&self, other: &ProresSettings) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for ProresSettings

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more