Struct aws_sdk_computeoptimizer::model::InstanceRecommendation[][src]

#[non_exhaustive]
pub struct InstanceRecommendation { pub instance_arn: Option<String>, pub account_id: Option<String>, pub instance_name: Option<String>, pub current_instance_type: Option<String>, pub finding: Option<Finding>, pub finding_reason_codes: Option<Vec<InstanceRecommendationFindingReasonCode>>, pub utilization_metrics: Option<Vec<UtilizationMetric>>, pub look_back_period_in_days: f64, pub recommendation_options: Option<Vec<InstanceRecommendationOption>>, pub recommendation_sources: Option<Vec<RecommendationSource>>, pub last_refresh_timestamp: Option<DateTime>, }
Expand description

Describes an Amazon EC2 instance recommendation.

Fields (Non-exhaustive)

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
instance_arn: Option<String>

The Amazon Resource Name (ARN) of the current instance.

account_id: Option<String>

The Amazon Web Services account ID of the instance.

instance_name: Option<String>

The name of the current instance.

current_instance_type: Option<String>

The instance type of the current instance.

finding: Option<Finding>

The finding classification of the instance.

Findings for instances include:

  • Underprovisioned —An instance is considered under-provisioned when at least one specification of your instance, such as CPU, memory, or network, does not meet the performance requirements of your workload. Under-provisioned instances may lead to poor application performance.

  • Overprovisioned —An instance is considered over-provisioned when at least one specification of your instance, such as CPU, memory, or network, can be sized down while still meeting the performance requirements of your workload, and no specification is under-provisioned. Over-provisioned instances may lead to unnecessary infrastructure cost.

  • Optimized —An instance is considered optimized when all specifications of your instance, such as CPU, memory, and network, meet the performance requirements of your workload and is not over provisioned. For optimized resources, Compute Optimizer might recommend a new generation instance type.

finding_reason_codes: Option<Vec<InstanceRecommendationFindingReasonCode>>

The reason for the finding classification of the instance.

Finding reason codes for instances include:

  • CPUOverprovisioned — The instance’s CPU configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the CPUUtilization metric of the current instance during the look-back period.

  • CPUUnderprovisioned — The instance’s CPU configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better CPU performance. This is identified by analyzing the CPUUtilization metric of the current instance during the look-back period.

  • MemoryOverprovisioned — The instance’s memory configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the memory utilization metric of the current instance during the look-back period.

  • MemoryUnderprovisioned — The instance’s memory configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better memory performance. This is identified by analyzing the memory utilization metric of the current instance during the look-back period.

    Memory utilization is analyzed only for resources that have the unified CloudWatch agent installed on them. For more information, see Enabling memory utilization with the Amazon CloudWatch Agent in the Compute Optimizer User Guide. On Linux instances, Compute Optimizer analyses the mem_used_percent metric in the CWAgent namespace, or the legacy MemoryUtilization metric in the System/Linux namespace. On Windows instances, Compute Optimizer analyses the Memory % Committed Bytes In Use metric in the CWAgent namespace.

  • EBSThroughputOverprovisioned — The instance’s EBS throughput configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the VolumeReadOps and VolumeWriteOps metrics of EBS volumes attached to the current instance during the look-back period.

  • EBSThroughputUnderprovisioned — The instance’s EBS throughput configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better EBS throughput performance. This is identified by analyzing the VolumeReadOps and VolumeWriteOps metrics of EBS volumes attached to the current instance during the look-back period.

  • EBSIOPSOverprovisioned — The instance’s EBS IOPS configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the VolumeReadBytes and VolumeWriteBytes metric of EBS volumes attached to the current instance during the look-back period.

  • EBSIOPSUnderprovisioned — The instance’s EBS IOPS configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better EBS IOPS performance. This is identified by analyzing the VolumeReadBytes and VolumeWriteBytes metric of EBS volumes attached to the current instance during the look-back period.

  • NetworkBandwidthOverprovisioned — The instance’s network bandwidth configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the NetworkIn and NetworkOut metrics of the current instance during the look-back period.

  • NetworkBandwidthUnderprovisioned — The instance’s network bandwidth configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better network bandwidth performance. This is identified by analyzing the NetworkIn and NetworkOut metrics of the current instance during the look-back period. This finding reason happens when the NetworkIn or NetworkOut performance of an instance is impacted.

  • NetworkPPSOverprovisioned — The instance’s network PPS (packets per second) configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the NetworkPacketsIn and NetworkPacketsIn metrics of the current instance during the look-back period.

  • NetworkPPSUnderprovisioned — The instance’s network PPS (packets per second) configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better network PPS performance. This is identified by analyzing the NetworkPacketsIn and NetworkPacketsIn metrics of the current instance during the look-back period.

  • DiskIOPSOverprovisioned — The instance’s disk IOPS configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the DiskReadOps and DiskWriteOps metrics of the current instance during the look-back period.

  • DiskIOPSUnderprovisioned — The instance’s disk IOPS configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better disk IOPS performance. This is identified by analyzing the DiskReadOps and DiskWriteOps metrics of the current instance during the look-back period.

  • DiskThroughputOverprovisioned — The instance’s disk throughput configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the DiskReadBytes and DiskWriteBytes metrics of the current instance during the look-back period.

  • DiskThroughputUnderprovisioned — The instance’s disk throughput configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better disk throughput performance. This is identified by analyzing the DiskReadBytes and DiskWriteBytes metrics of the current instance during the look-back period.

For more information about instance metrics, see List the available CloudWatch metrics for your instances in the Amazon Elastic Compute Cloud User Guide. For more information about EBS volume metrics, see Amazon CloudWatch metrics for Amazon EBS in the Amazon Elastic Compute Cloud User Guide.

utilization_metrics: Option<Vec<UtilizationMetric>>

An array of objects that describe the utilization metrics of the instance.

look_back_period_in_days: f64

The number of days for which utilization metrics were analyzed for the instance.

recommendation_options: Option<Vec<InstanceRecommendationOption>>

An array of objects that describe the recommendation options for the instance.

recommendation_sources: Option<Vec<RecommendationSource>>

An array of objects that describe the source resource of the recommendation.

last_refresh_timestamp: Option<DateTime>

The timestamp of when the instance recommendation was last refreshed.

Implementations

The Amazon Resource Name (ARN) of the current instance.

The Amazon Web Services account ID of the instance.

The name of the current instance.

The instance type of the current instance.

The finding classification of the instance.

Findings for instances include:

  • Underprovisioned —An instance is considered under-provisioned when at least one specification of your instance, such as CPU, memory, or network, does not meet the performance requirements of your workload. Under-provisioned instances may lead to poor application performance.

  • Overprovisioned —An instance is considered over-provisioned when at least one specification of your instance, such as CPU, memory, or network, can be sized down while still meeting the performance requirements of your workload, and no specification is under-provisioned. Over-provisioned instances may lead to unnecessary infrastructure cost.

  • Optimized —An instance is considered optimized when all specifications of your instance, such as CPU, memory, and network, meet the performance requirements of your workload and is not over provisioned. For optimized resources, Compute Optimizer might recommend a new generation instance type.

The reason for the finding classification of the instance.

Finding reason codes for instances include:

  • CPUOverprovisioned — The instance’s CPU configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the CPUUtilization metric of the current instance during the look-back period.

  • CPUUnderprovisioned — The instance’s CPU configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better CPU performance. This is identified by analyzing the CPUUtilization metric of the current instance during the look-back period.

  • MemoryOverprovisioned — The instance’s memory configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the memory utilization metric of the current instance during the look-back period.

  • MemoryUnderprovisioned — The instance’s memory configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better memory performance. This is identified by analyzing the memory utilization metric of the current instance during the look-back period.

    Memory utilization is analyzed only for resources that have the unified CloudWatch agent installed on them. For more information, see Enabling memory utilization with the Amazon CloudWatch Agent in the Compute Optimizer User Guide. On Linux instances, Compute Optimizer analyses the mem_used_percent metric in the CWAgent namespace, or the legacy MemoryUtilization metric in the System/Linux namespace. On Windows instances, Compute Optimizer analyses the Memory % Committed Bytes In Use metric in the CWAgent namespace.

  • EBSThroughputOverprovisioned — The instance’s EBS throughput configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the VolumeReadOps and VolumeWriteOps metrics of EBS volumes attached to the current instance during the look-back period.

  • EBSThroughputUnderprovisioned — The instance’s EBS throughput configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better EBS throughput performance. This is identified by analyzing the VolumeReadOps and VolumeWriteOps metrics of EBS volumes attached to the current instance during the look-back period.

  • EBSIOPSOverprovisioned — The instance’s EBS IOPS configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the VolumeReadBytes and VolumeWriteBytes metric of EBS volumes attached to the current instance during the look-back period.

  • EBSIOPSUnderprovisioned — The instance’s EBS IOPS configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better EBS IOPS performance. This is identified by analyzing the VolumeReadBytes and VolumeWriteBytes metric of EBS volumes attached to the current instance during the look-back period.

  • NetworkBandwidthOverprovisioned — The instance’s network bandwidth configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the NetworkIn and NetworkOut metrics of the current instance during the look-back period.

  • NetworkBandwidthUnderprovisioned — The instance’s network bandwidth configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better network bandwidth performance. This is identified by analyzing the NetworkIn and NetworkOut metrics of the current instance during the look-back period. This finding reason happens when the NetworkIn or NetworkOut performance of an instance is impacted.

  • NetworkPPSOverprovisioned — The instance’s network PPS (packets per second) configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the NetworkPacketsIn and NetworkPacketsIn metrics of the current instance during the look-back period.

  • NetworkPPSUnderprovisioned — The instance’s network PPS (packets per second) configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better network PPS performance. This is identified by analyzing the NetworkPacketsIn and NetworkPacketsIn metrics of the current instance during the look-back period.

  • DiskIOPSOverprovisioned — The instance’s disk IOPS configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the DiskReadOps and DiskWriteOps metrics of the current instance during the look-back period.

  • DiskIOPSUnderprovisioned — The instance’s disk IOPS configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better disk IOPS performance. This is identified by analyzing the DiskReadOps and DiskWriteOps metrics of the current instance during the look-back period.

  • DiskThroughputOverprovisioned — The instance’s disk throughput configuration can be sized down while still meeting the performance requirements of your workload. This is identified by analyzing the DiskReadBytes and DiskWriteBytes metrics of the current instance during the look-back period.

  • DiskThroughputUnderprovisioned — The instance’s disk throughput configuration doesn't meet the performance requirements of your workload and there is an alternative instance type that provides better disk throughput performance. This is identified by analyzing the DiskReadBytes and DiskWriteBytes metrics of the current instance during the look-back period.

For more information about instance metrics, see List the available CloudWatch metrics for your instances in the Amazon Elastic Compute Cloud User Guide. For more information about EBS volume metrics, see Amazon CloudWatch metrics for Amazon EBS in the Amazon Elastic Compute Cloud User Guide.

An array of objects that describe the utilization metrics of the instance.

The number of days for which utilization metrics were analyzed for the instance.

An array of objects that describe the recommendation options for the instance.

An array of objects that describe the source resource of the recommendation.

The timestamp of when the instance recommendation was last refreshed.

Creates a new builder-style object to manufacture InstanceRecommendation

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Performs the conversion.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Performs the conversion.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more