1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
//! ## Basic Invariants
//!
//! - `Bits` have a nonzero bit-width specified in a `NonZeroUsize`. Being
//!   nonzero, it eliminates several edge cases and ambiguities this crate would
//!   have to handle.
//! - `Bits` are stored in little endian order with the same requirements as
//!   `[usize]`. The number of `usize` digits is the minimum needed to store all
//!   bits. If bitwidth is not a multiple of `usize::BITS`, then there will be
//!   some unused bits in the last `usize` digit. For example, a bitwidth of of
//!   100 bits takes up 2 digits (if `usize::BITS == 64`): 64 bits in the first
//!   digit, 36 bits in the least significant bits of the second, and 28 unused
//!   bits in the remaining bits of the second.
//! - Unused bits are zeroed. Note that this is not a safety critical invariant.
//!   Setting unused bits via `Bits::as_mut_slice` or `Bits::last_mut` will not
//!   cause Rust U.B., but it may result in arithmetically incorrect results
//!   from the functions on `Bits`. Arbitrary bits can in the last digit can be
//!   set temporarily, but [Bits::clear_unused_bits] should be run before
//!   reaching a function that expects all these invariants to hold.

use core::{
    fmt,
    hash::{Hash, Hasher},
    mem,
    num::NonZeroUsize,
    ops::Range,
    ptr,
};

use awint_internals::*;

/// Because of the current limitations on custom DSTs, we had to resort to some
/// highly unsafe transmutes. To make the situation as safe as we could, we
/// shifted the transmute boundaries such that these transmutes only occur
/// between `&[usize], &Bits` and `&mut [usize], &mut Bits`. We also applied
/// `#[repr(transparent)]` to `Bits`. However, we still want to account for
/// unexpected changes by future compilers that are enough to break these. This
/// crate will fail to compile instead of causing accessible UB if this constant
/// fails.
const _ASSERT_BITS_ASSUMPTIONS: () = {
    let _ = ["Assertion that the size of `&mut [usize]` is what we expect"]
        [(mem::size_of::<&mut [usize]>() != mem::size_of::<&mut Bits>()) as usize];
    let _ = ["Assertion that the alignment of `&mut [usize]` is what we expect"]
        [(mem::align_of::<&mut [usize]>() != mem::align_of::<&mut Bits>()) as usize];

    // We cannot properly use `as *mut usize` in constants yet, but this should be
    // good enough. Make a round trip through two transmute boundaries to make sure
    // basic properties are not broken.
    let array: [usize; 2] = [42, 7]; // bitwidth of 7 and value 42
    let fat_ptr: *const usize = (&array) as *const usize;
    let bits: &Bits = unsafe { Bits::from_raw_parts(fat_ptr, array.len()) };
    let _ = ["Bitwidth check"][(bits.bw() != 7) as usize];
    let _ = ["Length check"][(bits.len() != 1) as usize];
    // these go through `get_unchecked` and `as_ptr` among other things
    let _ = ["Digit check"][(bits.first() != 42) as usize];
    let _ = ["Digit check"][(bits.last() != 42) as usize];
    let array_ref = bits.as_slice();
    let _ = ["Digit check"][(array_ref[0] != 42) as usize];
    let _ = ["Length check"][(array_ref.len() != 1) as usize];
};

/// A reference to the bits in an `InlAwi`, `ExtAwi`, or other backing
/// construct. This allows the same functions that operate on a dynamic `ExtAwi`
/// at runtime to also operate on an `InlAwi` at compile time.
///
/// `Bits` do **not** know signedness. Instead, the methods on `Bits` are
/// specified to interpret the bits as unsigned or signed two's complement
/// integers. If a method's documentation does not mention signedness, it either
/// works for both kinds or views the bits as a plain bit string with no
/// integral properties.
///
/// # Note
///
/// Unless otherwise specified, functions on `Bits` that return an `Option<()>`
/// return `None` if the input bitwidths are not equal to each other. The `Bits`
/// have been left unchanged if `None` is returned.
///
/// # Portability
///
/// There are many functions that depend on `usize` and `NonZeroUsize`. In cases
/// where the `usize` describes the bitwidth, a bit shift, or a bit position,
/// the user should not need to worry about portability, since if the values are
/// close to `usize::MAX`, the user is already close to running out of possible
/// memory any way.
///
/// There are a few usages of `usize` that are not just indexes but are actual
/// views into a contiguous range of bits inside `Bits`, such as
/// `Bits::as_slice`, `Bits::first`, and `Bits::get_digit` (which are all hidden
/// from the documentation, please refer to the source code of `bits.rs` if
/// needed). Most end users should not uses these, since they have
/// a strong dependence on the size of `usize`. These functions are actual views
/// into the inner building blocks of this crate that other functions are built
/// around in such a way that they are portable (e.g. the addition functions may
/// internally operate on differing numbers of `usize` digits depending on the
/// size of `usize`, but the end result looks the same to users on different
/// architectures). The only reason these functions are exposed, is that someone
/// may want to write their own custom performant algorithms, and they want as
/// few abstractions as possible in the way.
///
/// Visible functions that are not portable in general, but always start from
/// the zeroeth bit or a given bit position like [Bits::short_cin_mul],
/// [Bits::short_udivide_assign], or [Bits::usize_or_assign], are always
/// portable as long as the digit inputs and/or outputs are restricted to
/// `0..u8::MAX`.
///
/// The `Bits::as_bytes` function and related functions, the serialization impls
/// enabled by `serde_support`, the strings produced by the `const`
/// serialization functions, and the serialization free functions in the
/// `awint_ext` crate are all portable and should be used when sending
/// representations of `Bits` between architectures.
///
/// The `Hash` impl and the `rand_assign_using` function enabled by
/// `rand_support` use a deterministic byte oriented implementation to avoid
/// portability issues.
#[repr(transparent)]
pub struct Bits {
    /// # Raw Invariants
    ///
    /// We have chosen `Bits` to be a DST in order to avoid double indirection
    /// (`&mut Bits` would be a pointer to a `Bits` struct which in turn had a
    /// pointer inside itself to the actual digits). A DST also lets us harness
    /// the power of Rust's desugering and inference surrounding other DSTS.
    ///
    /// In addition to the minimum number of digits required to store all the
    /// bits, there is one more metadata digit on the end of the slice
    /// responsible for storing the actual bitwidth. The length field on the
    /// `[usize]` DST is the total number of digits in the slice, including
    /// regular digits and the metadata digit. This design decision was made to
    /// prevent invoking UB by having a fake slice with the bitwidth instead of
    /// the true slice width. Even if we completely avoid all Rust core methods
    /// on slices (and thus avoid practical UB due to avoiding standard slice
    /// functions expecting a standard length field), Miri can still detect a
    /// fake slice being made (even if we completely avoid
    /// `core::ptr::slice_from_raw_parts`).
    ///
    /// The metadata bitwidth is on the end of the slice, because accesses of
    /// the bitwidth also commonly access the last digit right next to it
    /// through `clear_unused_bits`. This means good cache locality even if the
    /// slice is huge and interior digits are rarely accessed. Storing the
    /// bitwidth at the beginning of the slice instead (which is what Rust does
    /// if we add the bitwidth directly as a field in the `Bits` DST) would lead
    /// to extra offsetting operations being done to skip the first digit
    /// pointed to by the pointer in the DST.
    ///
    /// The unfortunate consequence is that taking `Bits` digitwise subslices of
    /// `Bits` in the same general no-copy way that you can take subslices of
    /// regular Rust slices is not possible. `subdigits_mut!` almost achieves it
    /// by temporarily replacing a digit with the needed metadata where the end
    /// of the subslice is, running a closure on the subslice, and
    /// then replacing the digit at the end. A different crate without fine
    /// bitwidth control would have to be spun off of this one.
    raw: [usize],
}

/// `Bits` is safe to send between threads since it does not own
/// aliasing memory and has no reference counting mechanism like `Rc`.
unsafe impl Send for Bits {}

/// `Bits` is safe to share between threads since it does not own
/// aliasing memory and has no mutable internal state like `Cell` or `RefCell`.
unsafe impl Sync for Bits {}

/// # Basic functions
impl<'a> Bits {
    /// # Safety
    ///
    /// `raw_ptr` and `raw_len` should satisfy the raw invariants (not just the
    /// regular invariants, but those that account for the extra bitwidth digit)
    /// of `Bits` along with [standard alignment and initialization
    /// conditions](core::slice::from_raw_parts_mut). `Bits` itself does not
    /// allocate or deallocate memory. It is expected that the caller had a
    /// struct with proper `Drop` implementation, created `Bits` from that
    /// struct, and insured that the struct is borrowed for the duration of
    /// the `Bits` lifetime. The memory referenced by `bits` must not be
    /// accessed through any other reference for the duration of lifetime `'a`.
    #[doc(hidden)]
    #[inline]
    pub const unsafe fn from_raw_parts(raw_ptr: *const usize, raw_len: usize) -> &'a Self {
        // Safety: `Bits` follows standard slice initialization invariants and is marked
        // `#[repr(transparent)]`. `_ASSERT_BITS_ASSUMPTIONS` also has safeguards. The
        // explicit lifetimes make sure they do not become unbounded.
        unsafe { mem::transmute::<&[usize], &Bits>(&*ptr::slice_from_raw_parts(raw_ptr, raw_len)) }
    }

    /// # Safety
    ///
    /// see [Bits::from_raw_parts]
    #[doc(hidden)]
    #[inline]
    pub const unsafe fn from_raw_parts_mut(raw_ptr: *mut usize, raw_len: usize) -> &'a mut Self {
        // Safety: `Bits` follows standard slice initialization invariants and is marked
        // `#[repr(transparent)]`. `_ASSERT_BITS_ASSUMPTIONS` also has safeguards. The
        // explicit lifetimes make sure they do not become unbounded.
        unsafe {
            mem::transmute::<&mut [usize], &mut Bits>(&mut *ptr::slice_from_raw_parts_mut(
                raw_ptr, raw_len,
            ))
        }
    }

    /// Returns a raw pointer to the underlying bit storage. The caller must
    /// ensure that the `Bits` outlives the pointer this function returns.
    /// The underlying memory should never be written to.
    #[doc(hidden)]
    #[inline]
    pub const fn as_ptr(&self) -> *const usize {
        self.raw.as_ptr()
    }

    /// Returns a raw pointer to the underlying bit storage. The caller must
    /// ensure that the `Bits` outlives the pointer this function returns.
    #[doc(hidden)]
    #[inline]
    pub const fn as_mut_ptr(&mut self) -> *mut usize {
        self.raw.as_mut_ptr()
    }

    /// Returns the raw total length of `self`, including the bitwidth digit.
    #[doc(hidden)]
    #[inline]
    pub const fn raw_len(&self) -> usize {
        self.raw.len()
    }

    /// This allows access of all digits including the bitwidth digit.
    ///
    /// # Safety
    ///
    /// `i < self.raw_len()` should hold true
    #[doc(hidden)]
    #[inline]
    pub(crate) const unsafe fn raw_get_unchecked(&self, i: usize) -> usize {
        debug_assert!(i < self.raw_len());
        // Safety: `i` is bounded by `raw_len`
        unsafe { *self.as_ptr().add(i) }
    }

    /// This allows mutable access of all digits including the bitwidth digit.
    ///
    /// # Safety
    ///
    /// `i < self.raw_len()` should hold true
    #[doc(hidden)]
    #[inline]
    pub(crate) const unsafe fn raw_get_unchecked_mut(&'a mut self, i: usize) -> &'a mut usize {
        debug_assert!(i < self.raw_len());
        // Safety: `i` is bounded by `raw_len`. The lifetimes are bounded.
        unsafe { &mut *self.as_mut_ptr().add(i) }
    }

    /// Returns the bitwidth as a `NonZeroUsize`
    #[inline]
    pub const fn nzbw(&self) -> NonZeroUsize {
        unsafe {
            // Safety: The bitwidth is stored in the last raw slice element. The bitwidth is
            // nonzero if invariants were maintained.
            let bw = self.raw_get_unchecked(self.raw_len() - 1);
            // If something with zeroing allocation or mutations accidentally breaks during
            // development, it will probably manifest itself here
            debug_assert!(bw != 0);
            NonZeroUsize::new_unchecked(bw)
        }
    }

    /// Returns the bitwidth as a `usize`
    #[inline]
    pub const fn bw(&self) -> usize {
        self.nzbw().get()
    }

    /// # Safety
    ///
    /// `i < self.len()` should hold true
    #[doc(hidden)]
    #[inline]
    pub const unsafe fn get_unchecked(&self, i: usize) -> usize {
        debug_assert!(i < self.len());
        // Safety: `i < self.len()` means the access is within the slice
        unsafe { self.raw_get_unchecked(i) }
    }

    /// # Safety
    ///
    /// `i < self.len()` should hold true
    #[doc(hidden)]
    #[inline]
    pub const unsafe fn get_unchecked_mut(&'a mut self, i: usize) -> &'a mut usize {
        debug_assert!(i < self.len());
        // Safety: The bounds of this are a subset of `raw_get_unchecked_mut`
        unsafe { self.raw_get_unchecked_mut(i) }
    }

    /// Returns the exact number of `usize` digits needed to store all bits.
    #[inline]
    pub const fn len(&self) -> usize {
        // Safety: The length on the raw slice is the number of `usize` digits plus the
        // metadata bitwidth digit. To get the number of regular digits, we just
        // subtract the metadata digit.
        self.raw_len() - 1
    }

    /// Returns the number of unused bits.
    #[doc(hidden)]
    #[inline]
    pub const fn unused(&self) -> usize {
        if self.extra() == 0 {
            0
        } else {
            BITS - self.extra()
        }
    }

    /// Returns the number of extra bits, or `usize::BITS - self.unused()`. If
    /// there are no unused bits, this is zero.
    #[doc(hidden)]
    #[inline]
    pub const fn extra(&self) -> usize {
        extra(self.nzbw())
    }

    /// Returns the first `usize` digit
    #[doc(hidden)]
    #[inline]
    pub const fn first(&self) -> usize {
        // Safety: There is at least one digit since bitwidth has a nonzero invariant
        unsafe { self.get_unchecked(0) }
    }

    /// Returns a mutable reference to the first `usize` digit
    #[doc(hidden)]
    #[inline]
    pub const fn first_mut(&'a mut self) -> &'a mut usize {
        // Safety: There is at least one digit since bitwidth has a nonzero invariant
        unsafe { self.get_unchecked_mut(0) }
    }

    /// Returns the last `usize` digit
    #[doc(hidden)]
    #[inline]
    pub const fn last(&self) -> usize {
        // Safety: There is at least one digit since bitwidth has a nonzero invariant
        unsafe { self.get_unchecked(self.len() - 1) }
    }

    /// Returns a mutable reference to the last `usize` digit
    #[doc(hidden)]
    #[inline]
    pub const fn last_mut(&'a mut self) -> &'a mut usize {
        // Safety: There is at least one digit since bitwidth has a nonzero invariant
        unsafe { self.get_unchecked_mut(self.len() - 1) }
    }

    /// Clears the unused bits.
    #[inline]
    pub const fn clear_unused_bits(&mut self) {
        if self.extra() == 0 {
            return // There are no unused bits
        }
        *self.last_mut() &= MAX >> (BITS - self.extra());
    }

    /// Returns a reference to all of the underlying bits of `self`, including
    /// unused bits.
    ///
    /// # Note
    ///
    /// If the `Bits` has unused bits, those bits will always be set to zero,
    /// even if the `Bits` are intended to be a sign extended integer.
    #[doc(hidden)]
    #[inline]
    pub const fn as_slice(&'a self) -> &'a [usize] {
        // Safety: `Bits` already follows standard slice initialization invariants. This
        // acquires a subslice that includes everything except for the metadata digit.
        unsafe { &*ptr::slice_from_raw_parts(self.as_ptr(), self.len()) }
    }

    /// Returns a mutable reference to all of the underlying bits of `self`,
    /// including unused bits.
    ///
    /// # Note
    ///
    /// Unused bits can be temporarily set but should be cleared before they
    /// are used by another function that expects the standard `Bits` invariants
    /// to be upheld. Set unused bits will not cause Rust undefined behavior,
    /// but may cause incorrect arithmetical results.
    #[doc(hidden)]
    #[inline]
    pub const fn as_mut_slice(&'a mut self) -> &'a mut [usize] {
        // Safety: `Bits` already follows standard slice initialization invariants. This
        // acquires a subslice that includes everything except for the metadata digit,
        // so that it cannot be mutated.
        unsafe { &mut *ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len()) }
    }

    /// Returns a reference to the underlying bits of `self`, including unused
    /// bits (which occur if `self.bw()` is not a multiple of 8).
    ///
    /// # Note
    ///
    /// If the `Bits` has unused bits, those bits will always be set to zero,
    /// even if the `Bits` are intended to be a sign extended integer.
    pub const fn as_bytes(&'a self) -> &'a [u8] {
        // This will result in an 8 bit digit analog of unused bits
        let size_in_u8 = if (self.bw() % 8) == 0 {
            self.bw() / 8
        } else {
            (self.bw() / 8) + 1
        };
        // Safety: Adding on to what is satisfied in `as_slice`, [usize] can always be
        // divided into [u8] and the correct length is calculated above. If the bitwidth
        // is not a multiple of eight, there must be at least enough unused bits to form
        // one more byte.
        unsafe { &*ptr::slice_from_raw_parts(self.as_ptr() as *const u8, size_in_u8) }
    }

    /// Returns a mutable reference to the underlying bits of `self`, including
    /// unused bits (which occur if `self.bw()` is not a multiple of 8).
    ///
    /// # Note
    ///
    /// Unused bits can be temporarily set but should be cleared before they
    /// are used by another function that expects the standard `Bits` invariants
    /// to be upheld. Set unused bits will not cause Rust undefined behavior,
    /// but may cause incorrect arithmetical results.
    pub const fn as_mut_bytes(&'a mut self) -> &'a mut [u8] {
        let size_in_u8 = if (self.bw() % 8) == 0 {
            self.bw() / 8
        } else {
            (self.bw() / 8) + 1
        };
        // Safety: Same reasoning as `as_bytes`
        unsafe { &mut *ptr::slice_from_raw_parts_mut(self.as_mut_ptr() as *mut u8, size_in_u8) }
    }

    /// # Safety
    ///
    /// `range` must satisfy `range.start <= range.end` and `range.end <=
    /// self.len()`
    #[doc(hidden)]
    #[inline]
    pub const unsafe fn digit_set(
        &mut self,
        val: bool,
        range: Range<usize>,
        clear_unused_bits: bool,
    ) {
        debug_assert!(range.end <= self.len());
        debug_assert!(range.start <= range.end);
        //let byte = if val { u8::MAX } else { 0 };
        //ptr::write_bytes(
        //    self.as_mut_ptr().add(range.start),
        //    byte,
        //    range.end - range.start,
        //);
        let digit = if val { MAX } else { 0 };
        for_each_mut!(
            self,
            x,
            { range.start..range.end }
            { *x = digit },
            clear_unused_bits
        );
    }

    /// Gets one `usize` digit from `self` starting at the bit index `start`.
    /// Bits that extend beyond `self.bw()` are zeroed.
    #[doc(hidden)]
    pub const fn get_digit(&self, start: usize) -> usize {
        let digits = start.wrapping_shr(BITS.trailing_zeros());
        let bits = start & (BITS - 1);
        let mut tmp = 0;
        // Safety: The checks avoid indexing beyond `self.len() - 1`
        unsafe {
            if digits < self.len() {
                tmp = self.get_unchecked(digits) >> bits;
                if bits != 0 && ((digits + 1) < self.len()) {
                    tmp |= self.get_unchecked(digits + 1) << (BITS - bits);
                }
            }
            tmp
        }
    }

    /// Gets two `usize` digits from `self` starting at the bit index `start`,
    /// and returns them in little endian order. Bits that extend beyond
    /// `self.bw()` are zeroed.
    #[doc(hidden)]
    pub const fn get_double_digit(&self, start: usize) -> (usize, usize) {
        let digits = start.wrapping_shr(BITS.trailing_zeros());
        let bits = start & (BITS - 1);
        let mut first = 0;
        let mut second = 0;
        // Safety: The checks avoid indexing beyond `self.len() - 1`
        unsafe {
            if digits < self.len() {
                first = self.get_unchecked(digits) >> bits;
                if (digits + 1) < self.len() {
                    let mid = self.get_unchecked(digits + 1);
                    if bits == 0 {
                        second = mid;
                    } else {
                        first |= mid << (BITS - bits);
                        second = mid >> bits;
                        if (digits + 2) < self.len() {
                            second |= self.get_unchecked(digits + 2) << (BITS - bits);
                        }
                    };
                }
            }
            (first, second)
        }
    }
}

/// Forwards to the `LowerHex` impl.
impl fmt::Debug for Bits {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::LowerHex::fmt(self, f)
    }
}

/// Lowercase hexadecimal formatting.
///
/// ```
/// use awint::{InlAwi, inlawi};
/// assert_eq!(format!("{:x}", inlawi!(0xfedcba9876543210u100)), "0xfedcba98_76543210_u100");
/// ```
impl fmt::LowerHex for Bits {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.debug_format_hexadecimal(f, false)
    }
}

/// Uppercase hexadecimal formatting.
///
/// ```
/// use awint::{InlAwi, inlawi};
/// assert_eq!(format!("{:X}", inlawi!(0xFEDCBA9876543210u100)), "0xFEDCBA98_76543210_u100");
/// ```
impl fmt::UpperHex for Bits {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.debug_format_hexadecimal(f, true)
    }
}

/// Octal formatting.
///
/// ```
/// use awint::{InlAwi, inlawi};
/// assert_eq!(format!("{:o}", inlawi!(0o776543210u100)), "0o7_76543210_u100");
/// ```
impl fmt::Octal for Bits {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.debug_format_octal(f)
    }
}

/// Binary formatting.
///
/// ```
/// use awint::{inlawi, InlAwi};
/// assert_eq!(format!("{:b}", inlawi!(11000101)), "0b11000101_u8");
/// ```
impl fmt::Binary for Bits {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.debug_format_binary(f)
    }
}

impl fmt::Pointer for Bits {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let ptr = self.as_ptr();
        fmt::Pointer::fmt(&ptr, f)
    }
}

impl Hash for Bits {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.bw().hash(state);
        self.as_bytes().hash(state);
    }
}