1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
use core::fmt;

use awint_internals::*;
use SerdeError::*;

use crate::Bits;

/// Runs all pre serialization checks except for equal width and `Overflow`
/// checks
const fn verify_for_bytes_assign(src: &[u8], radix: u8) -> Result<(), SerdeError> {
    if radix < 2 || radix > 36 {
        return Err(InvalidRadix)
    }
    if src.is_empty() {
        return Err(Empty)
    }
    const_for!(i in {0..src.len()} {
        let b = src[i];
        if b == b'_' {
            continue;
        }
        let in_decimal_range = b'0' <= b && b < (b'0' + radix);
        let in_lower_range = (radix > 10) && (b'a' <= b) && (b < (b'a' + (radix - 10)));
        let in_upper_range = (radix > 10) && (b'A' <= b) && (b < (b'A' + (radix - 10)));
        if radix <= 10 {
            if !in_decimal_range {
                return Err(InvalidChar)
            }
        } else if !(in_decimal_range || in_lower_range || in_upper_range) {
            return Err(InvalidChar)
        }
    });
    Ok(())
}

/// # `const` string representation conversion
///
/// note: see higher level allocating functions from the `awint_ext` crate for
/// more.
impl Bits {
    /// A version of [Bits::bytes_radix_assign] optimized for power of two
    /// radixes
    #[doc(hidden)]
    pub const fn power_of_two_bytes_assign(
        &mut self,
        sign: Option<bool>,
        src: &[u8],
        radix: u8,
        pad: &mut Self,
    ) -> Result<(), SerdeError> {
        if self.bw() != pad.bw() {
            return Err(NonEqualWidths)
        }
        if !radix.is_power_of_two() {
            return Err(InvalidRadix)
        }
        let log2 = radix.trailing_zeros() as usize;
        if let Err(e) = verify_for_bytes_assign(src, radix) {
            return Err(e)
        }
        // the accumulator
        pad.zero_assign();
        let mut shl = 0;
        const_for!(i in {0..src.len()}.rev() {
            let b = src[i];
            if b == b'_' {
                continue;
            }
            let char_digit = if b <= b'9' {
                b.wrapping_sub(b'0')
            } else if b <= b'Z' {
                b.wrapping_sub(b'A').wrapping_add(10)
            } else {
                b.wrapping_sub(b'a').wrapping_add(10)
            } as usize;
            pad.usize_or_assign(char_digit, shl);
            shl += log2;
            if shl >= self.bw() {
                // check that the last digit did not cross the end
                if (BITS - (char_digit.leading_zeros() as usize)) + shl - log2 > self.bw() {
                    return Err(Overflow)
                }
                // there may be a bunch of leading zeros, so do not return an error yet
                const_for!(i in {0..i} {
                    match src[i] {
                        b'_' | b'0' => (),
                        _ => return Err(Overflow)
                    }
                });
                break
            }
        });
        if let Some(sign) = sign {
            if sign {
                if pad.lz() == 0 && !pad.is_imin() {
                    // These cannot be represented as negative
                    return Err(Overflow)
                }
                // handles `imin` correctly
                pad.neg_assign();
            } else if pad.lz() == 0 {
                // These cannot be represented as positive
                return Err(Overflow)
            }
        }
        self.copy_assign(pad);
        Ok(())
    }

    /// Assigns to `self` the integer value represented by `src` in the given
    /// `radix`. If `src` should be interpreted as unsigned, `sign` should be
    /// `None`, otherwise it should be set to the sign. In order for this
    /// function to be `const`, two scratchpads `pad0` and `pad1` with the
    /// same bitwidth as `self` must be supplied, which can be mutated by
    /// the function in arbitrary ways.
    ///
    /// # Errors
    ///
    /// `self` is not mutated if an error occurs. See [crate::SerdeError] for
    /// error conditions. The characters `0..=9`, `a..=z`, and `A..=Z` are
    /// allowed depending on the radix. The char `_` is ignored, and all
    /// other chars result in an error. `src` cannot be empty. The value of
    /// the string must be representable in the bitwidth of `self` with the
    /// specified sign, otherwise an overflow error is returned.
    pub const fn bytes_radix_assign(
        &mut self,
        sign: Option<bool>,
        src: &[u8],
        radix: u8,
        pad0: &mut Self,
        pad1: &mut Self,
    ) -> Result<(), SerdeError> {
        if (self.bw() != pad0.bw()) || (self.bw() != pad1.bw()) {
            return Err(NonEqualWidths)
        }
        if radix.is_power_of_two() {
            return self.power_of_two_bytes_assign(sign, src, radix, pad0)
        }
        if let Err(e) = verify_for_bytes_assign(src, radix) {
            return Err(e)
        }
        // the accumulator
        pad0.zero_assign();
        // contains the radix exponential
        pad1.uone_assign();
        const_for!(i in {0..src.len()}.rev() {
            let b = src[i];
            if b == b'_' {
                continue;
            }
            let char_digit = if radix <= 10 || b <= b'9' {
                b.wrapping_sub(b'0')
            } else if b <= b'Z' {
                b.wrapping_sub(b'A').wrapping_add(10)
            } else {
                b.wrapping_sub(b'a').wrapping_add(10)
            } as usize;
            let o0 = pad0.short_mul_add_triop(pad1, char_digit).unwrap();
            if o0 {
                return Err(Overflow)
            }
            let o1 = pad1.short_cin_mul(0, radix as usize);
            if o1 != 0 {
                // there may be a bunch of leading zeros, so do not return an error yet
                const_for!(i in {0..i} {
                    match src[i] {
                        b'_' | b'0' => (),
                        _ => return Err(Overflow)
                    }
                });
                break
            }
        });
        if let Some(sign) = sign {
            if sign {
                if pad0.lz() == 0 && !pad0.is_imin() {
                    // These cannot be represented as negative
                    return Err(Overflow)
                }
                // handles `imin` correctly
                pad0.neg_assign();
            } else if pad0.lz() == 0 {
                // These cannot be represented as positive
                return Err(Overflow)
            }
        }
        self.copy_assign(pad0);
        Ok(())
    }

    /// Assigns the `[u8]` representation of `self` to `dst`, not including a
    /// sign indicator. `signed` specifies if `self` should be interpreted as
    /// signed. `radix` specifies the radix, and `upper` specifies if letters
    /// should be uppercase. In order for this function to be `const`, a
    /// scratchpad `pad` with the same bitwidth as `self` must be supplied. Note
    /// that if `dst.len()` is more than what is needed to store the
    /// representation, the leading bytes will all be set to b'0'.
    ///
    /// # Errors
    ///
    /// Note: If an error is returned, `dst` may be set to anything
    ///
    /// This function can fail from `NonEqualWidths`, `InvalidRadix`, and
    /// `Overflow` (if `dst` cannot represent the value of `self`). See
    /// [crate::SerdeError].
    pub const fn to_bytes_radix(
        &self,
        signed: bool,
        dst: &mut [u8],
        radix: u8,
        upper: bool,
        pad: &mut Self,
    ) -> Result<(), SerdeError> {
        if self.bw() != pad.bw() {
            return Err(NonEqualWidths)
        }
        if radix < 2 || radix > 36 {
            return Err(InvalidRadix)
        }
        pad.copy_assign(self);
        if signed && pad.msb() {
            // happens to do the right thing to `imin`
            pad.neg_assign();
        }
        const_for!(i in {0..dst.len()}.rev() {
            let rem = pad.short_udivide_assign(radix as usize).unwrap() as u8;
            if rem < 10 {
                dst[i] = b'0' + rem;
            } else if upper {
                dst[i] = b'A' + (rem - 10);
            } else {
                dst[i] = b'a' + (rem - 10);
            }
        });
        if !pad.is_zero() {
            Err(Overflow)
        } else {
            Ok(())
        }
    }

    /// Writes the bits content as hexadecimal to `f`, with underscores every 8
    /// digits. I have decided on including the "0x" prefix and bitwidth suffix
    /// always, because it is confusing in `assert_` debugging otherwise.
    #[inline]
    pub(crate) fn debug_format_hexadecimal(
        &self,
        f: &mut fmt::Formatter,
        upper: bool,
    ) -> fmt::Result {
        f.write_fmt(format_args!("0x"))?;
        const_for!(j0 in {0..((self.bw() >> 2) + 1)}.rev() {
            if (self.get_digit(j0 << 2) & 0b1111) != 0 {
                // we have reached the first nonzero character
                const_for!(j1 in {0..(j0 + 1)}.rev() {
                    let mut char_digit = (self.get_digit(j1 << 2) & 0b1111) as u8;
                    if char_digit < 10 {
                        char_digit += b'0';
                    } else if upper {
                        char_digit += b'A' - 10;
                    } else {
                        char_digit += b'a' - 10;
                    }
                    // Safety: we strictly capped the range of possible values above with `& 0b1111`
                    let c = unsafe { char::from_u32_unchecked(char_digit as u32) };
                    f.write_fmt(format_args!("{}", c))?;
                    if ((j1 % 8) == 0) && (j1 != 0) {
                        f.write_fmt(format_args!("_"))?;
                    }
                });
                break
            }
            if j0 == 0 {
                // we have reached the end without printing anything, print at least one '0'
                f.write_fmt(format_args!("{}", '0'))?;
            }
        });
        f.write_fmt(format_args!("_u{}", self.bw()))
    }

    #[inline]
    pub(crate) fn debug_format_octal(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_fmt(format_args!("0o"))?;
        const_for!(j0 in {0..((self.bw() / 3) + 1)}.rev() {
            if (self.get_digit(j0 * 3) & 0b111) != 0 {
                // we have reached the first nonzero character
                const_for!(j1 in {0..(j0 + 1)}.rev() {
                    let mut char_digit = (self.get_digit(j1 * 3) & 0b111) as u8;
                    char_digit += b'0';
                    // Safety: we strictly capped the range of possible values above with `& 0b111`
                    let c = unsafe { char::from_u32_unchecked(char_digit as u32) };
                    if let Err(e) = f.write_fmt(format_args!("{}", c)) {
                        return Err(e)
                    }
                    if ((j1 % 8) == 0) && (j1 != 0) {
                        f.write_fmt(format_args!("_"))?;
                    }
                });
                break
            }
            if j0 == 0 {
                // we have reached the end without printing anything, print at least one '0'
                f.write_fmt(format_args!("{}", '0'))?;
            }
        });
        f.write_fmt(format_args!("_u{}", self.bw()))
    }

    // TODO this could be optimized
    #[inline]
    pub(crate) fn debug_format_binary(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_fmt(format_args!("0b"))?;
        const_for!(j0 in {0..self.bw()}.rev() {
            if (self.get_digit(j0) & 0b1) != 0 {
                // we have reached the first nonzero character
                const_for!(j1 in {0..(j0 + 1)}.rev() {
                    let mut char_digit = (self.get_digit(j1) & 0b1) as u8;
                    char_digit += b'0';
                    // Safety: we strictly capped the range of possible values above with `& 0b1`
                    let c = unsafe { char::from_u32_unchecked(char_digit as u32) };
                    if let Err(e) = f.write_fmt(format_args!("{}", c)) {
                        return Err(e)
                    }
                    if ((j1 % 8) == 0) && (j1 != 0) {
                        f.write_fmt(format_args!("_"))?;
                    }
                });
                break
            }
            if j0 == 0 {
                // we have reached the end without printing anything, print at least one '0'
                f.write_fmt(format_args!("{}", '0'))?;
            }
        });
        f.write_fmt(format_args!("_u{}", self.bw()))
    }
}