1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
//! Peak Signal-to-Noise Ratio metric.
//!
//! PSNR is most easily defined via the mean squared error between two images.
//!
//! See https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio for more details.

use crate::video::decode::Decoder;
use crate::video::pixel::CastFromPrimitive;
use crate::video::pixel::Pixel;
use crate::video::{FrameInfo, PlanarMetrics, VideoMetric};
use std::error::Error;
use v_frame::plane::Plane;

/// Calculates the PSNR for two videos. Higher is better.
///
/// PSNR is capped at 100 in order to avoid skewed statistics
/// from e.g. all black frames, which would
/// otherwise show a PSNR of infinity.
#[inline]
pub fn calculate_video_psnr<D: Decoder, F: Fn(usize) + Send>(
    decoder1: &mut D,
    decoder2: &mut D,
    frame_limit: Option<usize>,
    progress_callback: F,
) -> Result<PlanarMetrics, Box<dyn Error>> {
    let metrics = Psnr.process_video(decoder1, decoder2, frame_limit, progress_callback)?;
    Ok(metrics.psnr)
}

/// Calculates the APSNR for two videos. Higher is better.
///
/// APSNR is capped at 100 in order to avoid skewed statistics
/// from e.g. all black frames, which would
/// otherwise show a APSNR of infinity.
#[inline]
pub fn calculate_video_apsnr<D: Decoder, F: Fn(usize) + Send>(
    decoder1: &mut D,
    decoder2: &mut D,
    frame_limit: Option<usize>,
    progress_callback: F,
) -> Result<PlanarMetrics, Box<dyn Error>> {
    let metrics = Psnr.process_video(decoder1, decoder2, frame_limit, progress_callback)?;
    Ok(metrics.apsnr)
}

/// Calculates the PSNR for two video frames. Higher is better.
///
/// PSNR is capped at 100 in order to avoid skewed statistics
/// from e.g. all black frames, which would
/// otherwise show a PSNR of infinity.
#[inline]
pub fn calculate_frame_psnr<T: Pixel>(
    frame1: &FrameInfo<T>,
    frame2: &FrameInfo<T>,
) -> Result<PlanarMetrics, Box<dyn Error>> {
    let metrics = Psnr.process_frame(frame1, frame2)?;
    Ok(PlanarMetrics {
        y: calculate_psnr(metrics[0]),
        u: calculate_psnr(metrics[1]),
        v: calculate_psnr(metrics[2]),
        avg: calculate_summed_psnr(&metrics),
    })
}

#[derive(Debug, Clone, Copy)]
struct PsnrResults {
    psnr: PlanarMetrics,
    apsnr: PlanarMetrics,
}

struct Psnr;

impl VideoMetric for Psnr {
    type FrameResult = [PsnrMetrics; 3];
    type VideoResult = PsnrResults;

    fn process_frame<T: Pixel>(
        &self,
        frame1: &FrameInfo<T>,
        frame2: &FrameInfo<T>,
    ) -> Result<Self::FrameResult, Box<dyn Error>> {
        frame1.can_compare(&frame2)?;

        let bit_depth = frame1.bit_depth;
        let mut y = Default::default();
        let mut u = Default::default();
        let mut v = Default::default();

        rayon::scope(|s| {
            s.spawn(|_| {
                y = calculate_plane_psnr_metrics(&frame1.planes[0], &frame2.planes[0], bit_depth)
            });
            s.spawn(|_| {
                u = calculate_plane_psnr_metrics(&frame1.planes[1], &frame2.planes[1], bit_depth)
            });
            s.spawn(|_| {
                v = calculate_plane_psnr_metrics(&frame1.planes[2], &frame2.planes[2], bit_depth)
            });
        });

        Ok([y, u, v])
    }

    fn aggregate_frame_results(
        &self,
        metrics: &[Self::FrameResult],
    ) -> Result<Self::VideoResult, Box<dyn Error>> {
        let psnr = PlanarMetrics {
            y: calculate_summed_psnr(&metrics.iter().map(|m| m[0]).collect::<Vec<_>>()),
            u: calculate_summed_psnr(&metrics.iter().map(|m| m[1]).collect::<Vec<_>>()),
            v: calculate_summed_psnr(&metrics.iter().map(|m| m[2]).collect::<Vec<_>>()),
            avg: calculate_summed_psnr(&metrics.iter().flatten().copied().collect::<Vec<_>>()),
        };
        let apsnr = PlanarMetrics {
            y: metrics.iter().map(|m| calculate_psnr(m[0])).sum::<f64>() / metrics.len() as f64,
            u: metrics.iter().map(|m| calculate_psnr(m[1])).sum::<f64>() / metrics.len() as f64,
            v: metrics.iter().map(|m| calculate_psnr(m[2])).sum::<f64>() / metrics.len() as f64,
            avg: metrics
                .iter()
                .map(|m| calculate_summed_psnr(m))
                .sum::<f64>()
                / metrics.len() as f64,
        };
        Ok(PsnrResults { psnr, apsnr })
    }
}

#[derive(Debug, Clone, Copy, Default)]
struct PsnrMetrics {
    sq_err: f64,
    n_pixels: usize,
    sample_max: usize,
}

fn calculate_summed_psnr(metrics: &[PsnrMetrics]) -> f64 {
    calculate_psnr(
        metrics
            .iter()
            .fold(PsnrMetrics::default(), |acc, plane| PsnrMetrics {
                sq_err: acc.sq_err + plane.sq_err,
                sample_max: plane.sample_max,
                n_pixels: acc.n_pixels + plane.n_pixels,
            }),
    )
}

/// Calculate the PSNR metrics for a `Plane` by comparing the original (uncompressed) to
/// the compressed version.
fn calculate_plane_psnr_metrics<T: Pixel>(
    plane1: &Plane<T>,
    plane2: &Plane<T>,
    bit_depth: usize,
) -> PsnrMetrics {
    let sq_err = calculate_plane_total_squared_error(plane1, plane2);
    let max = (1 << bit_depth) - 1;
    PsnrMetrics {
        sq_err,
        n_pixels: plane1.cfg.width * plane1.cfg.height,
        sample_max: max,
    }
}

fn calculate_psnr(metrics: PsnrMetrics) -> f64 {
    if metrics.sq_err <= std::f64::EPSILON {
        return 100.0;
    }
    10.0 * ((metrics.sample_max.pow(2) as f64).log10() + (metrics.n_pixels as f64).log10()
        - metrics.sq_err.log10())
}

/// Calculate the squared error for a `Plane` by comparing the original (uncompressed)
/// to the compressed version.
fn calculate_plane_total_squared_error<T: Pixel>(plane1: &Plane<T>, plane2: &Plane<T>) -> f64 {
    plane1
        .data
        .iter()
        .zip(plane2.data.iter())
        .map(|(a, b)| (i32::cast_from(*a) - i32::cast_from(*b)).abs() as u64)
        .map(|err| err * err)
        .sum::<u64>() as f64
}