1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Copyright 2021-2022 Cargill Incorporated
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Consensus algorithm trait and implementations.

mod value_impls;

use std::convert::TryFrom;
use std::marker::PhantomData;

use crate::error::{AlgorithmError, InternalError};

/// A value to be agreed upon between processes.
pub trait Value: Clone {}

/// A consensus algorithm.
///
/// An algorithm processes events with a given context, producing a set of actions.
///
/// Events are inputs into the algorithm. For example, if a message is received from another
/// process, it is input into the algorithm as an event (likely a message delivery event).
///
/// Actions are the outputs of the algorithm. For example, the algorithm may output an action to
/// update the context and another action to send a message to another process.
///
/// The context of the algorithm contains the state of the algorithm which must be remembered
/// between events. For example, if an algorithm must keep track of how other processes have voted,
/// it will be stored in the context. A context is passed in with an event and updated using an
/// action.
pub trait Algorithm {
    /// The event type representing all valid events for the algorithm.
    type Event;

    /// The action type representing all valid actions returned by the algorithm.
    type Action;

    /// The context type representing all algorithm-specific state which must be stored.
    type Context;

    /// Process an event with a given context, producing a list of actions.
    fn event(
        &self,
        event: Self::Event,
        context: Self::Context,
    ) -> Result<Vec<Self::Action>, AlgorithmError>;

    /// Maps the inputs and output of algorithm into alternate types.
    ///
    /// In order to easily facilitate the run-time selection of `Algorithm` this function provides
    /// a way to transform an algorithm such that it may accept inputs and produce outputs for the
    /// general system.  This could be used to handle things like run-time switching,
    /// serialization, or the like.
    ///
    /// # Example
    ///
    /// Suppose we have a very simple counting algorithm:
    ///
    /// ```no_run
    /// use augrim::Algorithm;
    ///
    /// struct ExampleEvent(Option<u32>);
    /// struct ExampleAction(Option<u32>);
    /// struct ExampleContext(u32);
    /// # #[derive(Debug, Eq, PartialEq, Clone)]
    ///
    /// struct ExampleAlgorithm;
    ///
    /// impl Algorithm for ExampleAlgorithm {
    ///     type Event = ExampleEvent;
    ///     type Action = ExampleAction;
    ///     type Context = ExampleContext;
    ///
    ///     fn event(
    ///         &self,
    ///         event: Self::Event,
    ///         context: Self::Context,
    ///     ) -> Result<Vec<Self::Action>, augrim::error::AlgorithmError> {
    ///         if let ExampleEvent(Some(i)) = event {
    ///             Ok(vec![ExampleAction(Some(i + context.0))])
    ///         } else {
    ///             Ok(vec![ExampleAction(None)])
    ///         }
    ///     }
    /// }
    /// ```
    ///
    /// We can imagine a scenario where another component operates on the values in their
    /// serialized string formats.  Adding the appropriate [`TryFrom`] implementations for the
    /// event, context, and action types allows the use of `into_algorithm`.  The results of which
    /// would be an algorithm with the following types:
    ///
    /// ```ignore
    /// impl Algorithm<Event=Option<&'_ str>, Context=&'_ str, Action=Option<String>>
    /// ```
    ///
    /// We can see it used as follows:
    ///
    /// ```
    /// use augrim::Algorithm;
    ///
    /// # include!("./doctest_setup.rs");
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let algorithm = ExampleAlgorithm.into_algorithm();
    ///
    /// let actions: Vec<Option<String>> = algorithm.event(Some("1"), "1")?;
    /// assert_eq!(actions, vec![Some("2".to_string())]);
    ///
    /// let actions = algorithm.event(None, "2")?;
    /// assert_eq!(actions, vec![None]);
    ///
    /// # Ok(())
    /// # }
    ///
    /// ```
    fn into_algorithm<E, A, C>(self) -> IntoAlgorithm<Self, E, A, C>
    where
        Self: Sized,
        Self::Event: TryFrom<E, Error = InternalError>,
        A: TryFrom<Self::Action, Error = InternalError>,
        Self::Context: TryFrom<C, Error = InternalError>,
    {
        IntoAlgorithm {
            inner: self,
            _event: PhantomData,
            _action: PhantomData,
            _context: PhantomData,
        }
    }
}

/// An algorithm that wraps an algorithm of another type.
///
/// This `struct` is returned by the [`Algorithm::into_algorithm`] method.
pub struct IntoAlgorithm<T, E, A, C> {
    inner: T,
    _event: PhantomData<E>,
    _action: PhantomData<A>,
    _context: PhantomData<C>,
}

impl<T, E, A, C> Algorithm for IntoAlgorithm<T, E, A, C>
where
    T: Algorithm,
    <T as Algorithm>::Event: TryFrom<E, Error = InternalError>,
    A: TryFrom<<T as Algorithm>::Action, Error = InternalError>,
    <T as Algorithm>::Context: TryFrom<C, Error = InternalError>,
{
    type Event = E;
    type Action = A;
    type Context = C;

    fn event(
        &self,
        event: Self::Event,
        context: Self::Context,
    ) -> Result<Vec<Self::Action>, AlgorithmError> {
        let inner_event = event.try_into()?;
        let inner_context = context.try_into()?;

        let inner_actions = self.inner.event(inner_event, inner_context)?;

        inner_actions
            .into_iter()
            .map(|action| {
                let res: Result<A, InternalError> = action.try_into();
                res
            })
            .collect::<Result<Vec<Self::Action>, InternalError>>()
            .map_err(AlgorithmError::from)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    /// Test that an algorithm with the appropriate TryFrom impls succeeds using the
    /// `into_algorithm` method.
    #[test]
    fn test_into_algorithm() -> Result<(), Box<dyn std::error::Error>> {
        let algorithm = TestAlgorithm.into_algorithm();

        let actions: Vec<Option<String>> = algorithm.event(Some("1"), "1")?;
        assert_eq!(actions, vec![Some("2".to_string())]);

        let actions = algorithm.event(None, "2")?;
        assert_eq!(actions, vec![None]);

        Ok(())
    }

    /// Test that the event method fails if:
    /// 1. the `TryFrom` impl for Event fails
    /// 2. the `TryFrom` impl for Context fails
    #[test]
    fn test_into_algorithm_err() -> Result<(), Box<dyn std::error::Error>> {
        let algorithm = TestAlgorithm.into_algorithm::<_, Option<String>, _>();

        assert!(algorithm.event(Some("foo"), "1").is_err());

        assert!(algorithm.event(None, "foo").is_err());

        Ok(())
    }

    struct TestEvent(Option<u32>);
    struct TestAction(Option<u32>);
    struct TestContext(u32);
    #[derive(Debug, Eq, PartialEq, Clone)]
    struct TestProcess;

    struct TestAlgorithm;

    impl Algorithm for TestAlgorithm {
        type Event = TestEvent;
        type Action = TestAction;
        type Context = TestContext;

        fn event(
            &self,
            event: Self::Event,
            context: Self::Context,
        ) -> Result<Vec<Self::Action>, AlgorithmError> {
            if let TestEvent(Some(i)) = event {
                Ok(vec![TestAction(Some(i + context.0))])
            } else {
                Ok(vec![TestAction(None)])
            }
        }
    }

    impl<'a> TryFrom<Option<&'a str>> for TestEvent {
        type Error = InternalError;

        fn try_from(val: Option<&'a str>) -> Result<Self, Self::Error> {
            val.map(|s| {
                s.parse::<u32>()
                    .map_err(|e| InternalError::from_source(Box::new(e)))
            })
            .transpose()
            .map(TestEvent)
        }
    }

    impl TryFrom<TestAction> for Option<String> {
        type Error = InternalError;

        fn try_from(val: TestAction) -> Result<Self, Self::Error> {
            Ok(val.0.map(|i| i.to_string()))
        }
    }

    impl<'a> TryFrom<&'a str> for TestContext {
        type Error = InternalError;

        fn try_from(val: &'a str) -> Result<Self, Self::Error> {
            val.parse::<u32>()
                .map_err(|e| InternalError::from_source(Box::new(e)))
                .map(TestContext)
        }
    }
}