1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
//! An asynchronous, fixed-capacity single-reader single-writer ring buffer that notifies the reader onces data becomes available, and notifies the writer once new space for data becomes available. This is done via the AsyncRead and AsyncWrite traits.

#![deny(missing_docs)]
#![feature(offset_to)]

extern crate futures;
extern crate tokio_io;

#[cfg(test)]
extern crate quickcheck;
#[cfg(test)]
extern crate void;
#[cfg(test)]
extern crate rand;

use std::cmp::min;
use std::io::{Read, Write, Error};
use std::io::ErrorKind::WouldBlock;
use std::ptr::copy_nonoverlapping;
use std::cell::RefCell;
use std::rc::Rc;

use tokio_io::{AsyncRead, AsyncWrite};
use futures::{Poll, Async};
use futures::task::{Task, current};

/// Creates a new RingBuffer with the given capacity, and returns a handle for
/// writing and a handle for reading.
///
/// # Panics
/// Panics if capacity is `0` or greater than `isize::max_value()`.
pub fn ring_buffer(capacity: usize) -> (Writer, Reader) {
    if capacity == 0 || capacity > (isize::max_value() as usize) {
        panic!("Invalid ring buffer capacity.");
    }

    let mut data: Vec<u8> = Vec::with_capacity(capacity);
    let ptr = data.as_mut_slice().as_mut_ptr();

    let rb = Rc::new(RefCell::new(RingBuffer {
                                      data,
                                      read: ptr,
                                      amount: 0,
                                      task: None,
                                  }));

    (Writer(Rc::clone(&rb)), Reader(rb))
}

struct RingBuffer {
    data: Vec<u8>,
    // reading resumes from this position, this always points into the buffer
    read: *mut u8,
    // amount of valid data
    amount: usize,
    task: Option<Task>,
}

impl RingBuffer {
    fn park(&mut self) -> Error {
        self.task = Some(current());
        return Error::new(WouldBlock, "");
    }

    fn unpark(&mut self) {
        self.task.take().map(|task| task.notify());
    }

    fn write_ptr(&mut self) -> *mut u8 {
        unsafe {
            let start = self.data.as_mut_slice().as_mut_ptr();
            let diff = start
                .offset(self.data.capacity() as isize)
                .offset_to(self.read.offset(self.amount as isize))
                .unwrap();

            if diff < 0 {
                self.read.offset(self.amount as isize)
            } else {
                start.offset(diff)
            }
        }
    }
}

/// Write access to a nonblocking ring buffer with fixed capacity.
///
/// If there is no space in the buffer to write to, the current task is parked
/// and notified once space becomes available.
pub struct Writer(Rc<RefCell<RingBuffer>>);

impl Drop for Writer {
    fn drop(&mut self) {
        self.0.borrow_mut().unpark();
    }
}

/// Nonblocking `Write` implementation.
impl Write for Writer {
    /// Write data to the RingBuffer. The only error this may return is of kind
    /// `WouldBlock`. When this returns a `WouldBlock` error, the current task
    /// is parked and gets notified once more space becomes available in the
    /// buffer.
    ///
    /// This returns only returns `Ok(0)` if either `buf.len() == 0`, or if the
    /// corresponding Reader has been dropped and no more data will be read to
    /// free up space for new data. If the Writer task is parked while the
    /// Reader is dropped, the task gets notified.
    ///
    /// If a previous call to `read` returned a `WouldBlock` error, the
    /// corresponding `Reader` is unparked if data was written in this `write`
    /// call.
    fn write(&mut self, buf: &[u8]) -> Result<usize, Error> {
        let mut rb = self.0.borrow_mut();

        if buf.len() == 0 {
            return Ok(0);
        }

        let capacity = rb.data.capacity();
        let start = rb.data.as_mut_slice().as_mut_ptr();
        let end = unsafe { start.offset(capacity as isize) }; // end itself is 1 byte outside the buffer

        if rb.amount == capacity {
            if Rc::strong_count(&self.0) == 1 {
                return Ok(0);
            } else {
                return Err(rb.park());
            }
        }

        let buf_ptr = buf.as_ptr();
        let write_total = min(buf.len(), capacity - rb.amount);

        if (unsafe { rb.write_ptr().offset(write_total as isize) } as *const u8) < end {
            // non-wrapping case
            unsafe { copy_nonoverlapping(buf_ptr, rb.write_ptr(), write_total) };

            rb.amount += write_total;
        } else {
            // wrapping case
            let distance_we = rb.write_ptr().offset_to(end).unwrap() as usize;
            let remaining: usize = write_total - distance_we;

            unsafe { copy_nonoverlapping(buf_ptr, rb.write_ptr(), distance_we) };
            unsafe { copy_nonoverlapping(buf_ptr.offset(distance_we as isize), start, remaining) };

            rb.amount += write_total;
        }

        debug_assert!(rb.read >= start);
        debug_assert!(rb.read < end);
        debug_assert!(rb.amount <= capacity);

        rb.unpark();
        return Ok(write_total);
    }

    fn flush(&mut self) -> Result<(), Error> {
        Ok(())
    }
}

impl AsyncWrite for Writer {
    fn shutdown(&mut self) -> Poll<(), Error> {
        Ok(Async::Ready(()))
    }
}

/// Read access to a nonblocking ring buffer with fixed capacity.
///
/// If there is no data in the buffer to read from, the current task is parked
/// and notified once space becomes available.
pub struct Reader(Rc<RefCell<RingBuffer>>);

impl Drop for Reader {
    fn drop(&mut self) {
        self.0.borrow_mut().unpark();
    }
}

/// Nonblocking `Read` implementation.
impl Read for Reader {
    /// Read data from the RingBuffer. The only error this may return is of kind `WouldBlock`.
    /// When this returns a `WouldBlock` error, the current task is parked and
    /// gets notified once more data becomes available the buffer.
    ///
    /// This returns only returns `Ok(0)` if either `buf.len() == 0`, or if the
    /// corresponding Writer has been dropped and no new data will become
    /// available. If the Reader task is parked while the Writer is dropped, the
    /// task gets notified.
    ///
    /// If a previous call to `write` returned a `WouldBlock` error, the
    /// corresponding `Writer` is unparked if data was written in this `read`
    /// call.
    fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
        let mut rb = self.0.borrow_mut();

        if buf.len() == 0 {
            return Ok(0);
        }

        let capacity = rb.data.capacity();
        let start = rb.data.as_mut_slice().as_mut_ptr();
        let end = unsafe { start.offset(capacity as isize) }; // end itself is 1 byte outside the buffer

        if rb.amount == 0 {
            if Rc::strong_count(&self.0) == 1 {
                return Ok(0);
            } else {
                return Err(rb.park());
            }
        }

        let buf_ptr = buf.as_mut_ptr();
        let read_total = min(buf.len(), rb.amount);

        if (unsafe { rb.read.offset(read_total as isize) } as *const u8) < end {
            // non-wrapping case
            unsafe { copy_nonoverlapping(rb.read, buf_ptr, read_total) };

            rb.read = unsafe { rb.read.offset(read_total as isize) };
            rb.amount -= read_total;
        } else {
            // wrapping case
            let distance_re = rb.read.offset_to(end).unwrap() as usize;
            let remaining: usize = read_total - distance_re;

            unsafe { copy_nonoverlapping(rb.read, buf_ptr, distance_re) };
            unsafe { copy_nonoverlapping(start, buf_ptr.offset(distance_re as isize), remaining) };

            rb.read = unsafe { start.offset(remaining as isize) };
            rb.amount -= read_total;
        }

        debug_assert!(rb.read >= start);
        debug_assert!(rb.read < end);
        debug_assert!(rb.amount <= capacity);

        rb.unpark();
        return Ok(read_total);
    }
}

impl AsyncRead for Reader {}

#[cfg(test)]
mod tests {
    use std::io::ErrorKind::WouldBlock;
    use std::cmp::min;

    use quickcheck::{QuickCheck, StdGen, Gen, Arbitrary};
    use futures::{Future, Async};
    use futures::future::poll_fn;
    use void::Void;
    use rand;
    use rand::Rng;

    use super::*;

    #[derive(Clone, Debug)]
    struct Nums {
        items: Vec<usize>,
    }

    impl Arbitrary for Nums {
        fn arbitrary<G: Gen>(g: &mut G) -> Self {
            let size = g.size();
            let items: Vec<usize> = (0..200).map(|_| g.gen_range(0, size)).collect();
            Nums { items }
        }
    }

    struct WriteAll<'b> {
        buf_sizes: Vec<usize>,
        buf: &'b mut Writer,
        data: Vec<u8>,
        offset: usize,
    }

    impl<'b> WriteAll<'b> {
        fn new(buf_sizes: Vec<usize>, buf: &'b mut Writer) -> WriteAll {
            WriteAll {
                buf_sizes,
                buf,
                data: (0u8..255).collect(),
                offset: 0,
            }
        }

        fn step(&mut self) -> Option<usize> {
            let len = self.buf_sizes.pop().unwrap_or(5);
            match self.buf
                      .write(&self.data[self.offset..min(self.offset + len, self.data.len())]) {
                Err(e) => {
                    if e.kind() == WouldBlock {
                        return None;
                    } else {
                        panic!("RingBuffer returned error other than WouldBlock");
                    }
                }
                Ok(written) => {
                    self.offset += written;
                    return Some(written);
                }
            }
        }
    }

    impl<'b> Future for WriteAll<'b> {
        type Item = ();
        type Error = Void;

        fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
            while self.offset < self.data.len() {
                match self.step() {
                    None => return Ok(Async::NotReady),
                    Some(_) => {}
                }
            }
            return Ok(Async::Ready(()));
        }
    }

    struct ReadAll<'b, 'd> {
        buf_sizes: Vec<usize>,
        buf: &'b mut Reader,
        data: &'d mut Vec<u8>,
        offset: usize,
    }

    impl<'b, 'd> ReadAll<'b, 'd> {
        fn new(buf_sizes: Vec<usize>,
               buf: &'b mut Reader,
               data: &'d mut Vec<u8>)
               -> ReadAll<'b, 'd> {
            ReadAll {
                buf_sizes,
                buf,
                data,
                offset: 0,
            }
        }

        fn step(&mut self) -> Option<usize> {
            let len = self.buf_sizes.pop().unwrap_or(5);
            let end = self.data.len();
            match self.buf
                      .read(&mut self.data[self.offset..min(self.offset + len, end)]) {
                Err(e) => {
                    if e.kind() == WouldBlock {
                        return None;
                    } else {
                        panic!("RingBuffer returned error other than WouldBlock");
                    }
                }
                Ok(read) => {
                    self.offset += read;
                    return Some(read);
                }
            }
        }
    }

    impl<'b, 'd> Future for ReadAll<'b, 'd> {
        type Item = ();
        type Error = Void;

        fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
            while self.offset < self.data.len() {
                match self.step() {
                    None => return Ok(Async::NotReady),
                    Some(_) => {}
                }
            }
            return Ok(Async::Ready(()));
        }
    }

    // only works when passing buffers of nonzero length to read/write
    struct ReadWriteInterleaved<'rb, 'rd, 'wb> {
        read_all: ReadAll<'rb, 'rd>,
        write_all: WriteAll<'wb>,
        blocked: Blocked,
        done: Done,
    }

    enum Blocked {
        Reader,
        Writer,
        Neither,
    }

    #[derive(Eq, PartialEq)]
    enum Done {
        Reader,
        Writer,
        Neither,
        Both,
    }

    impl<'rb, 'rd, 'wb> ReadWriteInterleaved<'rb, 'rd, 'wb> {
        fn new(r_buf_sizes: Vec<usize>,
               r_buf: &'rb mut Reader,
               r_data: &'rd mut Vec<u8>,
               w_buf_sizes: Vec<usize>,
               w_buf: &'wb mut Writer)
               -> ReadWriteInterleaved<'rb, 'rd, 'wb> {
            ReadWriteInterleaved {
                read_all: ReadAll::new(r_buf_sizes, r_buf, r_data),
                write_all: WriteAll::new(w_buf_sizes, w_buf),
                blocked: Blocked::Neither,
                done: Done::Neither,
            }
        }
    }

    impl<'rb, 'rd, 'wb> Future for ReadWriteInterleaved<'rb, 'rd, 'wb> {
        type Item = ();
        type Error = Void;

        fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
            let mut rng = rand::thread_rng();

            loop {
                match self.done {
                    Done::Neither => {
                        match self.blocked {
                            Blocked::Neither => {
                                if rng.gen() {
                                    match self.write_all.step() {
                                        None => self.blocked = Blocked::Writer,
                                        Some(_) => {
                                            if !(self.write_all.offset <
                                                 self.write_all.data.len()) {
                                                self.done = Done::Writer;
                                            }
                                        }
                                    }
                                } else {
                                    match self.read_all.step() {
                                        None => self.blocked = Blocked::Reader,
                                        Some(_) => {
                                            if !(self.read_all.offset < self.read_all.data.len()) {
                                                self.done = Done::Reader;
                                            }
                                        }
                                    }
                                }
                            }

                            Blocked::Reader => {
                                match self.write_all.step() {
                                    None => self.blocked = Blocked::Writer,
                                    Some(read) => {
                                        if read > 0 {
                                            self.blocked = Blocked::Neither;
                                        }
                                        if !(self.write_all.offset < self.write_all.data.len()) {
                                            self.done = Done::Writer;
                                        }
                                    }
                                }
                            }

                            Blocked::Writer => {
                                match self.read_all.step() {
                                    None => self.blocked = Blocked::Reader,
                                    Some(read) => {
                                        if read > 0 {
                                            self.blocked = Blocked::Neither;
                                        }
                                        if !(self.read_all.offset < self.read_all.data.len()) {
                                            self.done = Done::Reader;
                                        }
                                    }
                                }
                            }
                        }
                    }

                    Done::Reader => {
                        match self.write_all.step() {
                            None => panic!("should never reach this state"),
                            Some(_) => {
                                if !(self.write_all.offset < self.write_all.data.len()) {
                                    self.done = Done::Both;
                                }
                            }
                        }
                    }

                    Done::Writer => {
                        match self.read_all.step() {
                            None => panic!("should never reach this state"),
                            Some(_) => {
                                if !(self.read_all.offset < self.read_all.data.len()) {
                                    self.done = Done::Both;
                                }
                            }
                        }
                    }

                    Done::Both => {
                        return Ok(Async::Ready(()));
                    }
                }
            }
        }
    }

    #[test]
    // Write until 8 bytes have been written, then read until 8 bytes have been
    // read. Repeat until done, then check that correct bytes have been read.
    fn test_separate() {
        let rng = StdGen::new(rand::thread_rng(), 12);
        let mut quickcheck = QuickCheck::new().gen(rng).tests(100);
        quickcheck.quickcheck(separate as fn(Nums, Nums) -> bool);
    }

    fn separate(buf_sizes_write: Nums, buf_sizes_read: Nums) -> bool {
        let (mut writer, mut reader) = ring_buffer(8);
        let mut data: Vec<u8> = (0..255).map(|_| 42).collect();
        {
            let write_all = WriteAll::new(buf_sizes_write.items, &mut writer);
            let read_all = ReadAll::new(buf_sizes_read.items, &mut reader, &mut data);

            let (_, _) = write_all.join(read_all).wait().unwrap();
        }

        for (i, byte) in data.iter().enumerate() {
            if *byte != (i as u8) {
                return false;
            }
        }

        return true;
    }

    #[test]
    // Interleaved reads and writes until done, then check that correct bytes
    // have been read.
    fn test_interleaved() {
        let rng = StdGen::new(rand::thread_rng(), 11);
        let mut quickcheck = QuickCheck::new().gen(rng).tests(1000);
        quickcheck.quickcheck(interleaved as fn(Nums, Nums) -> bool);
    }

    fn interleaved(buf_sizes_write: Nums, buf_sizes_read: Nums) -> bool {
        let (mut writer, mut reader) = ring_buffer(8);
        let mut data: Vec<u8> = (0..255).map(|_| 42).collect();
        {
            let _ = ReadWriteInterleaved::new(buf_sizes_read.items,
                                              &mut reader,
                                              &mut data,
                                              buf_sizes_write.items,
                                              &mut writer)
                    .wait()
                    .unwrap();
        }

        for (i, byte) in data.iter().enumerate() {
            if *byte != (i as u8) {
                return false;
            }
        }

        return true;
    }

    #[test]
    // If the reader has been dropped, writes will return Ok(0) once the buffer
    // is full.
    fn test_dropped_reader() {
        let mut writer;
        {
            let (w, _) = ring_buffer(8);
            writer = w;
        }
        assert_eq!(writer.write(&[0, 1, 2, 3, 4]).unwrap(), 5);
        assert_eq!(writer.write(&[5, 6, 7, 8, 9]).unwrap(), 3);
        assert_eq!(writer.write(&[8, 9]).unwrap(), 0);
        assert_eq!(writer.write(&[8, 9]).unwrap(), 0);
    }

    #[test]
    // If the reader is dropped while the writer is parked, the writer is
    // notified and further writes return Ok(0).
    fn test_dropped_reader_notify() {
        let mut writer = None;
        let mut blocked = false;
        assert_eq!(poll_fn::<(), Void, _>(|| if !blocked {
                                              let (mut w, mut r) = ring_buffer(8);
                                              assert_eq!(w.write(&[0, 1, 2, 3, 4, 5, 6, 7])
                                                             .unwrap(),
                                                         8);
                                              let _ = w.write(&[8, 9]).unwrap_err();
                                              blocked = true;
                                              writer = Some(w);
                                              let _ = r.read(&mut []); // use r so that drop does not get moved to an earlier point
                                              return Ok(Async::NotReady);
                                          } else {
                                              let mut w = writer.take().unwrap();
                                              assert_eq!(w.write(&[8, 9]).unwrap(), 0);
                                              assert_eq!(w.write(&[8, 9]).unwrap(), 0);
                                              return Ok(Async::Ready(()));
                                          })
                           .wait()
                           .unwrap(),
                   ());
    }

    #[test]
    // If the writer has been dropped, reads will return Ok(0) once all data
    // has been read.
    fn test_dropped_writer() {
        let mut reader;
        {
            let (mut w, r) = ring_buffer(8);
            assert_eq!(w.write(&[0, 1, 2, 3, 4, 5, 6, 7]).unwrap(), 8);
            reader = r;
        }
        let mut foo = [0u8; 8];
        assert_eq!(reader.read(&mut foo[0..5]).unwrap(), 5);
        assert_eq!(reader.read(&mut foo[5..8]).unwrap(), 3);
        assert_eq!(reader.read(&mut foo[0..8]).unwrap(), 0);
        assert_eq!(reader.read(&mut foo[0..8]).unwrap(), 0);
    }

    #[test]
    // If the writer is dropped while the reader is parked, the reader is
    // notified and further reads return Ok(0).
    fn test_dropped_writer_notify() {
        let mut reader = None;
        let mut blocked = false;
        assert_eq!(poll_fn::<(), Void, _>(|| if !blocked {
                                              let (mut w, mut r) = ring_buffer(8); // must give writer a name, or dropping optimized to an earlier point
                                              let mut foo = [0u8; 8];

                                              let _ = r.read(&mut foo[0..5]).unwrap_err();
                                              blocked = true;
                                              reader = Some(r);
                                              let _ = w.write(&[]); // use w so that drop does not get moved to an earlier point
                                              return Ok(Async::NotReady);
                                          } else {
                                              let mut r = reader.take().unwrap();
                                              let mut foo = [0u8; 8];

                                              assert_eq!(r.read(&mut foo[0..5]).unwrap(), 0);
                                              assert_eq!(r.read(&mut foo[0..5]).unwrap(), 0);
                                              return Ok(Async::Ready(()));
                                          })
                           .wait()
                           .unwrap(),
                   ());
    }
}