1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
//! Reference-counted async lock.
//!
//! The [`Lock`] type is similar to [`std::sync::Mutex`], except locking is an async operation.
//!
//! Note that [`Lock`] by itself acts like an [`Arc`] in the sense that cloning it returns just
//! another reference to the same lock.
//!
//! Furthermore, [`LockGuard`] is not tied to [`Lock`] by a lifetime, so you can keep guards for
//! as long as you want. This is useful when you want to spawn a task and move a guard into its
//! future.
//!
//! The locking mechanism uses eventual fairness to ensure locking will be fair on average without
//! sacrificing performance. This is done by forcing a fair lock whenever a lock operation is
//! starved for longer than 0.5 milliseconds.
//!
//! # Examples
//!
//! ```
//! # smol::run(async {
//! use async_lock::Lock;
//! use smol::Task;
//!
//! let lock = Lock::new(0);
//! let mut tasks = vec![];
//!
//! for _ in 0..10 {
//!     let lock = lock.clone();
//!     tasks.push(Task::spawn(async move { *lock.lock().await += 1 }));
//! }
//!
//! for task in tasks {
//!     task.await;
//! }
//! assert_eq!(*lock.lock().await, 10);
//! # })
//! ```

#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]

use std::cell::UnsafeCell;
use std::fmt;
use std::ops::{Deref, DerefMut};
use std::process;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
use std::time::{Duration, Instant};

use event_listener::Event;

/// An async lock.
pub struct Lock<T>(Arc<Inner<T>>);

impl<T> Clone for Lock<T> {
    fn clone(&self) -> Lock<T> {
        Lock(self.0.clone())
    }
}

/// Data inside [`Lock`].
struct Inner<T> {
    /// Current state of the lock.
    ///
    /// The least significant bit is set to 1 if the lock is acquired.
    /// The other bits hold the number of starved lock operations.
    state: AtomicUsize,

    /// Lock operations waiting for the lock to be released.
    lock_ops: Event,

    /// The value inside the lock.
    data: UnsafeCell<T>,
}

unsafe impl<T: Send> Send for Lock<T> {}
unsafe impl<T: Send> Sync for Lock<T> {}

impl<T> Lock<T> {
    /// Creates a new async lock.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::Lock;
    ///
    /// let lock = Lock::new(0);
    /// ```
    pub fn new(data: T) -> Lock<T> {
        Lock(Arc::new(Inner {
            state: AtomicUsize::new(0),
            lock_ops: Event::new(),
            data: UnsafeCell::new(data),
        }))
    }

    /// Acquires the lock.
    ///
    /// Returns a guard that releases the lock when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # smol::block_on(async {
    /// use async_lock::Lock;
    ///
    /// let lock = Lock::new(10);
    /// let guard = lock.lock().await;
    /// assert_eq!(*guard, 10);
    /// # })
    /// ```
    #[inline]
    pub async fn lock(&self) -> LockGuard<T> {
        if let Some(guard) = self.try_lock() {
            return guard;
        }
        self.lock_slow().await
    }

    /// Slow path for acquiring the lock.
    #[cold]
    pub async fn lock_slow(&self) -> LockGuard<T> {
        // Get the current time.
        let start = Instant::now();

        loop {
            // Start listening for events.
            let listener = self.0.lock_ops.listen();

            // Try locking if nobody is being starved.
            match self.0.state.compare_and_swap(0, 1, Ordering::Acquire) {
                // Lock acquired!
                0 => return LockGuard(self.clone()),

                // Lock is held and nobody is starved.
                1 => {}

                // Somebody is starved.
                _ => break,
            }

            // Wait for a notification.
            listener.await;

            // Try locking if nobody is being starved.
            match self.0.state.compare_and_swap(0, 1, Ordering::Acquire) {
                // Lock acquired!
                0 => return LockGuard(self.clone()),

                // Lock is held and nobody is starved.
                1 => {}

                // Somebody is starved.
                _ => {
                    // Notify the first listener in line because we probably received a
                    // notification that was meant for a starved task.
                    self.0.lock_ops.notify(1);
                    break;
                }
            }

            // If waiting for too long, fall back to a fairer locking strategy that will prevent
            // newer lock operations from starving us forever.
            if start.elapsed() > Duration::from_micros(500) {
                break;
            }
        }

        // Increment the number of starved lock operations.
        if self.0.state.fetch_add(2, Ordering::Release) > usize::MAX / 2 {
            // In case of potential overflow, abort.
            process::abort();
        }

        // Decrement the counter when exiting this function.
        let _call = CallOnDrop(|| {
            self.0.state.fetch_sub(2, Ordering::Release);
        });

        loop {
            // Start listening for events.
            let listener = self.0.lock_ops.listen();

            // Try locking if nobody else is being starved.
            match self.0.state.compare_and_swap(2, 2 | 1, Ordering::Acquire) {
                // Lock acquired!
                2 => return LockGuard(self.clone()),

                // Lock is held by someone.
                s if s % 2 == 1 => {}

                // Lock is available.
                _ => {
                    // Be fair: notify the first listener and then go wait in line.
                    self.0.lock_ops.notify(1);
                }
            }

            // Wait for a notification.
            listener.await;

            // Try acquiring the lock without waiting for others.
            if self.0.state.fetch_or(1, Ordering::Acquire) % 2 == 0 {
                return LockGuard(self.clone());
            }
        }
    }

    /// Attempts to acquire the lock.
    ///
    /// If the lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
    /// guard is returned that releases the lock when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::Lock;
    ///
    /// let lock = Lock::new(10);
    /// if let Some(guard) = lock.try_lock() {
    ///     assert_eq!(*guard, 10);
    /// }
    /// # ;
    /// ```
    #[inline]
    pub fn try_lock(&self) -> Option<LockGuard<T>> {
        if self.0.state.compare_and_swap(0, 1, Ordering::Acquire) == 0 {
            Some(LockGuard(self.clone()))
        } else {
            None
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for Lock<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct Locked;
        impl fmt::Debug for Locked {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<locked>")
            }
        }

        match self.try_lock() {
            None => f.debug_struct("Lock").field("data", &Locked).finish(),
            Some(guard) => f.debug_struct("Lock").field("data", &&*guard).finish(),
        }
    }
}

impl<T> From<T> for Lock<T> {
    fn from(val: T) -> Lock<T> {
        Lock::new(val)
    }
}

impl<T: Default> Default for Lock<T> {
    fn default() -> Lock<T> {
        Lock::new(Default::default())
    }
}

/// A guard that releases the lock when dropped.
pub struct LockGuard<T>(Lock<T>);

unsafe impl<T: Send> Send for LockGuard<T> {}
unsafe impl<T: Sync> Sync for LockGuard<T> {}

impl<T> LockGuard<T> {
    /// Returns a reference to the lock a guard came from.
    ///
    /// # Examples
    ///
    /// ```
    /// # smol::block_on(async {
    /// use async_lock::{Lock, LockGuard};
    ///
    /// let lock = Lock::new(10i32);
    /// let guard = lock.lock().await;
    /// dbg!(LockGuard::source(&guard));
    /// # })
    /// ```
    pub fn source(guard: &LockGuard<T>) -> &Lock<T> {
        &guard.0
    }
}

impl<T> Drop for LockGuard<T> {
    fn drop(&mut self) {
        // Remove the last bit and notify a waiting lock operation.
        (self.0).0.state.fetch_sub(1, Ordering::Release);
        (self.0).0.lock_ops.notify(1);
    }
}

impl<T: fmt::Debug> fmt::Debug for LockGuard<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: fmt::Display> fmt::Display for LockGuard<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T> Deref for LockGuard<T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*(self.0).0.data.get() }
    }
}

impl<T> DerefMut for LockGuard<T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *(self.0).0.data.get() }
    }
}

/// Calls a function when dropped.
struct CallOnDrop<F: Fn()>(F);

impl<F: Fn()> Drop for CallOnDrop<F> {
    fn drop(&mut self) {
        (self.0)();
    }
}