1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
//! Defines the multiplication arithmetic kernels for Decimal
//! `PrimitiveArrays`.

use crate::{
    array::PrimitiveArray,
    compute::{
        arithmetics::{ArrayCheckedMul, ArrayMul, ArraySaturatingMul},
        arity::{binary, binary_checked, unary},
        utils::{check_same_len, combine_validities},
    },
    datatypes::DataType,
    error::{Error, Result},
    scalar::{PrimitiveScalar, Scalar},
};

use super::{adjusted_precision_scale, get_parameters, max_value, number_digits};

/// Multiply two decimal primitive arrays with the same precision and scale. If
/// the precision and scale is different, then an InvalidArgumentError is
/// returned. This function panics if the multiplied numbers result in a number
/// larger than the possible number for the selected precision.
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::mul;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(1_00i128), Some(1_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
/// let b = PrimitiveArray::from([Some(1_00i128), Some(2_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
///
/// let result = mul(&a, &b);
/// let expected = PrimitiveArray::from([Some(1_00i128), Some(2_00i128), None, Some(4_00i128)]).to(DataType::Decimal(5, 2));
///
/// assert_eq!(result, expected);
/// ```
pub fn mul(lhs: &PrimitiveArray<i128>, rhs: &PrimitiveArray<i128>) -> PrimitiveArray<i128> {
    let (precision, scale) = get_parameters(lhs.data_type(), rhs.data_type()).unwrap();

    let scale = 10i128.pow(scale as u32);
    let max = max_value(precision);

    let op = move |a: i128, b: i128| {
        // The multiplication between i128 can overflow if they are
        // very large numbers. For that reason a checked
        // multiplication is used.
        let res: i128 = a.checked_mul(b).expect("Mayor overflow for multiplication");

        // The multiplication is done using the numbers without scale.
        // The resulting scale of the value has to be corrected by
        // dividing by (10^scale)

        //   111.111 -->      111111
        //   222.222 -->      222222
        // --------          -------
        // 24691.308 <-- 24691308642
        let res = res / scale;

        assert!(
            res.abs() <= max,
            "Overflow in multiplication presented for precision {precision}"
        );

        res
    };

    binary(lhs, rhs, lhs.data_type().clone(), op)
}

/// Multiply a decimal [`PrimitiveArray`] with a [`PrimitiveScalar`] with the same precision and scale. If
/// the precision and scale is different, then an InvalidArgumentError is
/// returned. This function panics if the multiplied numbers result in a number
/// larger than the possible number for the selected precision.
pub fn mul_scalar(lhs: &PrimitiveArray<i128>, rhs: &PrimitiveScalar<i128>) -> PrimitiveArray<i128> {
    let (precision, scale) = get_parameters(lhs.data_type(), rhs.data_type()).unwrap();

    let rhs = if let Some(rhs) = *rhs.value() {
        rhs
    } else {
        return PrimitiveArray::<i128>::new_null(lhs.data_type().clone(), lhs.len());
    };

    let scale = 10i128.pow(scale as u32);
    let max = max_value(precision);

    let op = move |a: i128| {
        // The multiplication between i128 can overflow if they are
        // very large numbers. For that reason a checked
        // multiplication is used.
        let res: i128 = a
            .checked_mul(rhs)
            .expect("Mayor overflow for multiplication");

        // The multiplication is done using the numbers without scale.
        // The resulting scale of the value has to be corrected by
        // dividing by (10^scale)

        //   111.111 -->      111111
        //   222.222 -->      222222
        // --------          -------
        // 24691.308 <-- 24691308642
        let res = res / scale;

        assert!(
            res.abs() <= max,
            "Overflow in multiplication presented for precision {precision}"
        );

        res
    };

    unary(lhs, op, lhs.data_type().clone())
}

/// Saturated multiplication of two decimal primitive arrays with the same
/// precision and scale. If the precision and scale is different, then an
/// InvalidArgumentError is returned. If the result from the multiplication is
/// larger than the possible number with the selected precision then the
/// resulted number in the arrow array is the maximum number for the selected
/// precision.
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::saturating_mul;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(999_99i128), Some(1_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
/// let b = PrimitiveArray::from([Some(10_00i128), Some(2_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
///
/// let result = saturating_mul(&a, &b);
/// let expected = PrimitiveArray::from([Some(999_99i128), Some(2_00i128), None, Some(4_00i128)]).to(DataType::Decimal(5, 2));
///
/// assert_eq!(result, expected);
/// ```
pub fn saturating_mul(
    lhs: &PrimitiveArray<i128>,
    rhs: &PrimitiveArray<i128>,
) -> PrimitiveArray<i128> {
    let (precision, scale) = get_parameters(lhs.data_type(), rhs.data_type()).unwrap();

    let scale = 10i128.pow(scale as u32);
    let max = max_value(precision);

    let op = move |a: i128, b: i128| match a.checked_mul(b) {
        Some(res) => {
            let res = res / scale;

            match res {
                res if res.abs() > max => {
                    if res > 0 {
                        max
                    } else {
                        -max
                    }
                }
                _ => res,
            }
        }
        None => max,
    };

    binary(lhs, rhs, lhs.data_type().clone(), op)
}

/// Checked multiplication of two decimal primitive arrays with the same
/// precision and scale. If the precision and scale is different, then an
/// InvalidArgumentError is returned. If the result from the mul is larger than
/// the possible number with the selected precision (overflowing), then the
/// validity for that index is changed to None
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::checked_mul;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(999_99i128), Some(1_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
/// let b = PrimitiveArray::from([Some(10_00i128), Some(2_00i128), None, Some(2_00i128)]).to(DataType::Decimal(5, 2));
///
/// let result = checked_mul(&a, &b);
/// let expected = PrimitiveArray::from([None, Some(2_00i128), None, Some(4_00i128)]).to(DataType::Decimal(5, 2));
///
/// assert_eq!(result, expected);
/// ```
pub fn checked_mul(lhs: &PrimitiveArray<i128>, rhs: &PrimitiveArray<i128>) -> PrimitiveArray<i128> {
    let (precision, scale) = get_parameters(lhs.data_type(), rhs.data_type()).unwrap();

    let scale = 10i128.pow(scale as u32);
    let max = max_value(precision);

    let op = move |a: i128, b: i128| match a.checked_mul(b) {
        Some(res) => {
            let res = res / scale;

            match res {
                res if res.abs() > max => None,
                _ => Some(res),
            }
        }
        None => None,
    };

    binary_checked(lhs, rhs, lhs.data_type().clone(), op)
}

// Implementation of ArrayMul trait for PrimitiveArrays
impl ArrayMul<PrimitiveArray<i128>> for PrimitiveArray<i128> {
    fn mul(&self, rhs: &PrimitiveArray<i128>) -> Self {
        mul(self, rhs)
    }
}

// Implementation of ArrayCheckedMul trait for PrimitiveArrays
impl ArrayCheckedMul<PrimitiveArray<i128>> for PrimitiveArray<i128> {
    fn checked_mul(&self, rhs: &PrimitiveArray<i128>) -> Self {
        checked_mul(self, rhs)
    }
}

// Implementation of ArraySaturatingMul trait for PrimitiveArrays
impl ArraySaturatingMul<PrimitiveArray<i128>> for PrimitiveArray<i128> {
    fn saturating_mul(&self, rhs: &PrimitiveArray<i128>) -> Self {
        saturating_mul(self, rhs)
    }
}

/// Adaptive multiplication of two decimal primitive arrays with different
/// precision and scale. If the precision and scale is different, then the
/// smallest scale and precision is adjusted to the largest precision and
/// scale. If during the multiplication one of the results is larger than the
/// max possible value, the result precision is changed to the precision of the
/// max value
///
/// ```nocode
///   11111.0    -> 6, 1
///      10.002  -> 5, 3
/// -----------------
///  111132.222  -> 9, 3
/// ```
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::decimal::adaptive_mul;
/// use arrow2::array::PrimitiveArray;
/// use arrow2::datatypes::DataType;
///
/// let a = PrimitiveArray::from([Some(11111_0i128), Some(1_0i128)]).to(DataType::Decimal(6, 1));
/// let b = PrimitiveArray::from([Some(10_002i128), Some(2_000i128)]).to(DataType::Decimal(5, 3));
/// let result = adaptive_mul(&a, &b).unwrap();
/// let expected = PrimitiveArray::from([Some(111132_222i128), Some(2_000i128)]).to(DataType::Decimal(9, 3));
///
/// assert_eq!(result, expected);
/// ```
pub fn adaptive_mul(
    lhs: &PrimitiveArray<i128>,
    rhs: &PrimitiveArray<i128>,
) -> Result<PrimitiveArray<i128>> {
    check_same_len(lhs, rhs)?;

    let (lhs_p, lhs_s, rhs_p, rhs_s) =
        if let (DataType::Decimal(lhs_p, lhs_s), DataType::Decimal(rhs_p, rhs_s)) =
            (lhs.data_type(), rhs.data_type())
        {
            (*lhs_p, *lhs_s, *rhs_p, *rhs_s)
        } else {
            return Err(Error::InvalidArgumentError(
                "Incorrect data type for the array".to_string(),
            ));
        };

    // The resulting precision is mutable because it could change while
    // looping through the iterator
    let (mut res_p, res_s, diff) = adjusted_precision_scale(lhs_p, lhs_s, rhs_p, rhs_s);

    let shift = 10i128.pow(diff as u32);
    let shift_1 = 10i128.pow(res_s as u32);
    let mut max = max_value(res_p);

    let values = lhs
        .values()
        .iter()
        .zip(rhs.values().iter())
        .map(|(l, r)| {
            // Based on the array's scales one of the arguments in the sum has to be shifted
            // to the left to match the final scale
            let res = if lhs_s > rhs_s {
                l.checked_mul(r * shift)
            } else {
                (l * shift).checked_mul(*r)
            }
            .expect("Mayor overflow for multiplication");

            let res = res / shift_1;

            // The precision of the resulting array will change if one of the
            // multiplications during the iteration produces a value bigger
            // than the possible value for the initial precision

            //  10.0000 -> 6, 4
            //  10.0000 -> 6, 4
            // -----------------
            // 100.0000 -> 7, 4
            if res.abs() > max {
                res_p = number_digits(res);
                max = max_value(res_p);
            }

            res
        })
        .collect::<Vec<_>>();

    let validity = combine_validities(lhs.validity(), rhs.validity());

    Ok(PrimitiveArray::<i128>::new(
        DataType::Decimal(res_p, res_s),
        values.into(),
        validity,
    ))
}