arrow 1.0.0

Rust implementation of Apache Arrow
Documentation
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Arrow Tensor Type, defined in
//! [`format/Tensor.fbs`](https://github.com/apache/arrow/blob/master/format/Tensor.fbs).

use std::marker::PhantomData;
use std::mem;

use crate::buffer::Buffer;
use crate::datatypes::*;

/// Computes the strides required assuming a row major memory layout
fn compute_row_major_strides<T: ArrowPrimitiveType>(shape: &[usize]) -> Vec<usize> {
    let mut remaining_bytes = mem::size_of::<T::Native>();
    for i in shape {
        remaining_bytes = remaining_bytes
            .checked_mul(*i)
            .expect("Overflow occurred when computing row major strides.");
    }

    let mut strides = Vec::<usize>::new();
    for i in shape {
        remaining_bytes /= *i;
        strides.push(remaining_bytes);
    }
    strides
}

/// Computes the strides required assuming a column major memory layout
fn compute_column_major_strides<T: ArrowPrimitiveType>(shape: &[usize]) -> Vec<usize> {
    let mut remaining_bytes = mem::size_of::<T::Native>();
    let mut strides = Vec::<usize>::new();
    for i in shape {
        strides.push(remaining_bytes);
        remaining_bytes = remaining_bytes
            .checked_mul(*i)
            .expect("Overflow occurred when computing column major strides.");
    }
    strides
}

/// Tensor of primitive types
#[derive(Debug)]
pub struct Tensor<'a, T: ArrowPrimitiveType> {
    data_type: DataType,
    buffer: Buffer,
    shape: Option<Vec<usize>>,
    strides: Option<Vec<usize>>,
    names: Option<Vec<&'a str>>,
    _marker: PhantomData<T>,
}

pub type BooleanTensor<'a> = Tensor<'a, BooleanType>;
pub type Int8Tensor<'a> = Tensor<'a, Int8Type>;
pub type Int16Tensor<'a> = Tensor<'a, Int16Type>;
pub type Int32Tensor<'a> = Tensor<'a, Int32Type>;
pub type Int64Tensor<'a> = Tensor<'a, Int64Type>;
pub type UInt8Tensor<'a> = Tensor<'a, UInt8Type>;
pub type UInt16Tensor<'a> = Tensor<'a, UInt16Type>;
pub type UInt32Tensor<'a> = Tensor<'a, UInt32Type>;
pub type UInt64Tensor<'a> = Tensor<'a, UInt64Type>;
pub type Float32Tensor<'a> = Tensor<'a, Float32Type>;
pub type Float64Tensor<'a> = Tensor<'a, Float64Type>;

impl<'a, T: ArrowPrimitiveType> Tensor<'a, T> {
    /// Creates a new `Tensor`
    pub fn new(
        buffer: Buffer,
        shape: Option<Vec<usize>>,
        strides: Option<Vec<usize>>,
        names: Option<Vec<&'a str>>,
    ) -> Self {
        match &shape {
            None => {
                assert_eq!(
                    buffer.len(),
                    mem::size_of::<T::Native>(),
                    "underlying buffer should only contain a single tensor element"
                );
                assert_eq!(None, strides);
                assert_eq!(None, names);
            }
            Some(ref s) => {
                strides
                    .iter()
                    .map(|i| {
                        assert_eq!(s.len(), i.len(), "shape and stride dimensions differ")
                    })
                    .next();
                names
                    .iter()
                    .map(|i| {
                        assert_eq!(
                            s.len(),
                            i.len(),
                            "number of dimensions and number of dimension names differ"
                        )
                    })
                    .next();
            }
        };
        Self {
            data_type: T::get_data_type(),
            buffer,
            shape,
            strides,
            names,
            _marker: PhantomData,
        }
    }

    /// Creates a new Tensor using row major memory layout
    pub fn new_row_major(
        buffer: Buffer,
        shape: Option<Vec<usize>>,
        names: Option<Vec<&'a str>>,
    ) -> Self {
        let strides = shape
            .as_ref()
            .map(|ref s| compute_row_major_strides::<T>(&s));
        Self::new(buffer, shape, strides, names)
    }

    /// Creates a new Tensor using column major memory layout
    pub fn new_column_major(
        buffer: Buffer,
        shape: Option<Vec<usize>>,
        names: Option<Vec<&'a str>>,
    ) -> Self {
        let strides = shape
            .as_ref()
            .map(|ref s| compute_column_major_strides::<T>(&s));
        Self::new(buffer, shape, strides, names)
    }

    /// The data type of the `Tensor`
    pub fn data_type(&self) -> &DataType {
        &self.data_type
    }

    /// The sizes of the dimensions
    pub fn shape(&self) -> Option<&Vec<usize>> {
        self.shape.as_ref()
    }

    /// Returns a reference to the underlying `Buffer`
    pub fn data(&self) -> &Buffer {
        &self.buffer
    }

    /// The number of bytes between elements in each dimension
    pub fn strides(&self) -> Option<&Vec<usize>> {
        self.strides.as_ref()
    }

    /// The names of the dimensions
    pub fn names(&self) -> Option<&Vec<&'a str>> {
        self.names.as_ref()
    }

    /// The number of dimensions
    pub fn ndim(&self) -> usize {
        match &self.shape {
            None => 0,
            Some(v) => v.len(),
        }
    }

    /// The name of dimension i
    pub fn dim_name(&self, i: usize) -> Option<&'a str> {
        self.names.as_ref().map(|ref names| names[i])
    }

    /// The total number of elements in the `Tensor`
    pub fn size(&self) -> usize {
        match self.shape {
            None => 0,
            Some(ref s) => s.iter().product(),
        }
    }

    /// Indicates if the data is laid out contiguously in memory
    pub fn is_contiguous(&self) -> bool {
        self.is_row_major() || self.is_column_major()
    }

    /// Indicates if the memory layout row major
    pub fn is_row_major(&self) -> bool {
        match self.shape {
            None => false,
            Some(ref s) => Some(compute_row_major_strides::<T>(s)) == self.strides,
        }
    }

    /// Indicates if the memory layout column major
    pub fn is_column_major(&self) -> bool {
        match self.shape {
            None => false,
            Some(ref s) => Some(compute_column_major_strides::<T>(s)) == self.strides,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::array::*;
    use crate::buffer::Buffer;

    #[test]
    fn test_compute_row_major_strides() {
        assert_eq!(
            vec![48, 8],
            compute_row_major_strides::<Int64Type>(&vec![4_usize, 6])
        );
        assert_eq!(
            vec![24, 4],
            compute_row_major_strides::<Int32Type>(&vec![4_usize, 6])
        );
        assert_eq!(
            vec![6, 1],
            compute_row_major_strides::<Int8Type>(&vec![4_usize, 6])
        );
    }

    #[test]
    fn test_compute_column_major_strides() {
        assert_eq!(
            vec![8, 32],
            compute_column_major_strides::<Int64Type>(&vec![4_usize, 6])
        );
        assert_eq!(
            vec![4, 16],
            compute_column_major_strides::<Int32Type>(&vec![4_usize, 6])
        );
        assert_eq!(
            vec![1, 4],
            compute_column_major_strides::<Int8Type>(&vec![4_usize, 6])
        );
    }

    #[test]
    fn test_zero_dim() {
        let buf = Buffer::from(&[1]);
        let tensor = UInt8Tensor::new(buf, None, None, None);
        assert_eq!(0, tensor.size());
        assert_eq!(None, tensor.shape());
        assert_eq!(None, tensor.names());
        assert_eq!(0, tensor.ndim());
        assert_eq!(false, tensor.is_row_major());
        assert_eq!(false, tensor.is_column_major());
        assert_eq!(false, tensor.is_contiguous());

        let buf = Buffer::from(&[1, 2, 2, 2]);
        let tensor = Int32Tensor::new(buf, None, None, None);
        assert_eq!(0, tensor.size());
        assert_eq!(None, tensor.shape());
        assert_eq!(None, tensor.names());
        assert_eq!(0, tensor.ndim());
        assert_eq!(false, tensor.is_row_major());
        assert_eq!(false, tensor.is_column_major());
        assert_eq!(false, tensor.is_contiguous());
    }

    #[test]
    fn test_tensor() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i).unwrap();
        }
        let buf = builder.finish();
        let tensor = Int32Tensor::new(buf, Some(vec![2, 8]), None, None);
        assert_eq!(16, tensor.size());
        assert_eq!(Some(vec![2_usize, 8]).as_ref(), tensor.shape());
        assert_eq!(None, tensor.strides());
        assert_eq!(2, tensor.ndim());
        assert_eq!(None, tensor.names());
    }

    #[test]
    fn test_new_row_major() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i).unwrap();
        }
        let buf = builder.finish();
        let tensor = Int32Tensor::new_row_major(buf, Some(vec![2, 8]), None);
        assert_eq!(16, tensor.size());
        assert_eq!(Some(vec![2_usize, 8]).as_ref(), tensor.shape());
        assert_eq!(Some(vec![32_usize, 4]).as_ref(), tensor.strides());
        assert_eq!(None, tensor.names());
        assert_eq!(2, tensor.ndim());
        assert_eq!(true, tensor.is_row_major());
        assert_eq!(false, tensor.is_column_major());
        assert_eq!(true, tensor.is_contiguous());
    }

    #[test]
    fn test_new_column_major() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i).unwrap();
        }
        let buf = builder.finish();
        let tensor = Int32Tensor::new_column_major(buf, Some(vec![2, 8]), None);
        assert_eq!(16, tensor.size());
        assert_eq!(Some(vec![2_usize, 8]).as_ref(), tensor.shape());
        assert_eq!(Some(vec![4_usize, 8]).as_ref(), tensor.strides());
        assert_eq!(None, tensor.names());
        assert_eq!(2, tensor.ndim());
        assert_eq!(false, tensor.is_row_major());
        assert_eq!(true, tensor.is_column_major());
        assert_eq!(true, tensor.is_contiguous());
    }

    #[test]
    fn test_with_names() {
        let mut builder = Int64BufferBuilder::new(8);
        for i in 0..8 {
            builder.append(i).unwrap();
        }
        let buf = builder.finish();
        let names = vec!["Dim 1", "Dim 2"];
        let tensor = Int64Tensor::new_column_major(buf, Some(vec![2, 4]), Some(names));
        assert_eq!(8, tensor.size());
        assert_eq!(Some(vec![2_usize, 4]).as_ref(), tensor.shape());
        assert_eq!(Some(vec![8_usize, 16]).as_ref(), tensor.strides());
        assert_eq!("Dim 1", tensor.dim_name(0).unwrap());
        assert_eq!("Dim 2", tensor.dim_name(1).unwrap());
        assert_eq!(2, tensor.ndim());
        assert_eq!(false, tensor.is_row_major());
        assert_eq!(true, tensor.is_column_major());
        assert_eq!(true, tensor.is_contiguous());
    }

    #[test]
    #[should_panic(expected = "shape and stride dimensions differ")]
    fn test_inconsistent_strides() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i).unwrap();
        }
        let buf = builder.finish();
        Int32Tensor::new(buf, Some(vec![2, 8]), Some(vec![2, 8, 1]), None);
    }

    #[test]
    #[should_panic(
        expected = "number of dimensions and number of dimension names differ"
    )]
    fn test_inconsistent_names() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i).unwrap();
        }
        let buf = builder.finish();
        Int32Tensor::new(
            buf,
            Some(vec![2, 8]),
            Some(vec![4, 8]),
            Some(vec!["1", "2", "3"]),
        );
    }
}