1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#![no_std]

//! The `array-vec` crate allows you to initialize arrays
//! with an initializer closure that will be called
//! once for each element until the array is filled.
//!
//! This way you do not need to default-fill an array
//! before running initializers. Rust currently only
//! lets you either specify all initializers at once,
//! individually (`[a(), b(), c(), ...]`), or specify
//! one initializer for a `Copy` type (`[a(); N]`),
//! which will be called once with the result copied over.
//!
//! # Examples:
//! ```rust
//! # #![allow(unused)]
//! # extern crate array_init;
//!
//! // Initialize an array of length 10 containing
//! // successive squares
//!
//! let arr: [u32; 50] = array_init::array_init(|i| (i*i) as u32);
//!
//! // Initialize an array from an iterator
//! // producing an array of [1,2,3,4] repeated
//!
//! let four = [1u32,2,3,4];
//! let mut iter = four.iter().cloned().cycle();
//! let arr: [u32; 50] = array_init::from_iter(iter).unwrap();
//!
//! // Closures can also mutate state. We guarantee that they will be called
//! // in order from lower to higher indices.
//!
//! let mut last = 1u64;
//! let mut secondlast = 0;
//! let fibonacci: [u64; 50] = array_init::array_init(|_| {
//!     let this = last + secondlast;
//!     secondlast = last;
//!     last = this;
//!     this
//! });
//! ```
//!
//! Currently, using `from_iter` and `array_init` will incur additional
//! memcpys, which may be undesirable for a large array. This can be eliminated
//! by using the nightly feature of this crate, which uses unions to provide
//! panic-safety. Alternatively, if your array only contains `Copy` types,
//! you can use `array_init_copy` and `from_iter_copy`.
//!
//! Sadly, cannot guarantee right now that any of these solutions will completely
//! eliminate a memcpy.
//!

extern crate nodrop;

use nodrop::NoDrop;
use core::mem;

/// Trait for things which are actually arrays
///
/// Probably shouldn't implement this yourself,
/// but you can
pub unsafe trait IsArray {
    type Item;
    /// Must assume self is uninitialized.
    fn set(&mut self, idx: usize, value: Self::Item);
    fn len() -> usize;
}

#[inline]
/// Initialize an array given an initializer expression
///
/// The initializer is given the index of the element. It is allowed
/// to mutate external state; we will always initialize the elements in order.
///
/// Without the nightly feature it is very likely that this will cause memcpys.
/// For panic safety, we internally use NoDrop, which will ensure that panics
/// in the initializer will not cause the array to be prematurely dropped.
/// If you are using a Copy type, prefer using `array_init_copy` since
/// it does not need the panic safety stuff and is more likely to have no
/// memcpys.
///
/// If your initializer panics, any elements that have been initialized
/// will be leaked.
///
/// # Examples
///
/// ```rust
/// # #![allow(unused)]
/// # extern crate array_init;
///
/// // Initialize an array of length 10 containing
/// // successive squares
///
/// let arr: [u32; 50] = array_init::array_init(|i| (i*i) as u32);
///
/// // Initialize an array from an iterator
/// // producing an array of [1,2,3,4] repeated
///
/// let four = [1u32,2,3,4];
/// let mut iter = four.iter().cloned().cycle();
/// let arr: [u32; 50] = array_init::from_iter(iter).unwrap();
///
/// ```
///
pub fn array_init<Array, F>(mut initializer: F) -> Array where Array: IsArray,
                                                               F: FnMut(usize) -> Array::Item {
    // NoDrop makes this panic-safe
    // We are sure to initialize the whole array here,
    // and we do not read from the array till then, so this is safe.
    let mut ret: NoDrop<Array> = NoDrop::new(unsafe { mem::uninitialized() });
    for i in 0..Array::len() {
        Array::set(&mut ret, i, initializer(i));
    }
    ret.into_inner()
}

#[inline]
/// Initialize an array given an iterator
///
/// We will iterate until the array is full or the iterator is exhausted. Returns
/// None if the iterator is exhausted before we can fill the array.
///
/// Without the nightly feature it is very likely that this will cause memcpys.
/// For panic safety, we internally use NoDrop, which will ensure that panics
/// in the initializer will not cause the array to be prematurely dropped.
/// If you are using a Copy type, prefer using `from_iter_copy` since
/// it does not need the panic safety stuff and is more likely to have no
/// memcpys.
///
/// # Examples
///
/// ```rust
/// # #![allow(unused)]
/// # extern crate array_init;
///
/// // Initialize an array from an iterator
/// // producing an array of [1,2,3,4] repeated
///
/// let four = [1u32,2,3,4];
/// let mut iter = four.iter().cloned().cycle();
/// let arr: [u32; 50] = array_init::from_iter_copy(iter).unwrap();
/// ```
///
pub fn from_iter<Array, I>(iter: I) -> Option<Array>
    where I: IntoIterator<Item = Array::Item>,
          Array: IsArray {
    // NoDrop makes this panic-safe
    // We are sure to initialize the whole array here,
    // and we do not read from the array till then, so this is safe.
    let mut ret: NoDrop<Array> = NoDrop::new(unsafe { mem::uninitialized() });
    let mut count = 0;
    for item in iter.into_iter().take(Array::len()) {
        Array::set(&mut ret, count, item);
        count += 1;
    }
    // crucial for safety!
    if count == Array::len() {
        Some(ret.into_inner())
    } else {
        None
    }
}

#[inline]
/// Initialize an array of `Copy` elements given an initializer expression
///
/// The initializer is given the index of the element. It is allowed
/// to mutate external state; we will always initialize the elements in order.
///
/// This is preferred over `array_init` if you have a `Copy` type
///
/// # Examples
///
/// ```rust
/// # #![allow(unused)]
/// # extern crate array_init;
///
/// // Initialize an array of length 10 containing
/// // successive squares
///
/// let arr: [u32; 50] = array_init::array_init_copy(|i| (i*i) as u32);
///
///
/// // Closures can also mutate state. We guarantee that they will be called
/// // in order from lower to higher indices.
///
/// let mut last = 1u64;
/// let mut secondlast = 0;
/// let fibonacci: [u64; 50] = array_init::array_init_copy(|_| {
///     let this = last + secondlast;
///     secondlast = last;
///     last = this;
///     this
/// });
/// ```
///
pub fn array_init_copy<Array, F>(mut initializer: F) -> Array where Array: IsArray,
                                                                    F: FnMut(usize) -> Array::Item,
                                                                    Array::Item : Copy {
    // We are sure to initialize the whole array here,
    // and we do not read from the array till then, so this is safe.
    let mut ret: Array = unsafe { mem::uninitialized() };
    for i in 0..Array::len() {
        Array::set(&mut ret, i, initializer(i));
    }
    ret
}

#[inline]
/// Initialize an array given an iterator
///
/// We will iterate until the array is full or the iterator is exhausted. Returns
/// None if the iterator is exhausted before we can fill the array.
///
/// This is preferred over `from_iter_copy` if you have a `Copy` type
///
/// # Examples
///
/// ```rust
/// # #![allow(unused)]
/// # extern crate array_init;
///
/// // Initialize an array from an iterator
/// // producing an array of [1,2,3,4] repeated
///
/// let four = [1u32,2,3,4];
/// let mut iter = four.iter().cloned().cycle();
/// let arr: [u32; 50] = array_init::from_iter_copy(iter).unwrap();
/// ```
pub fn from_iter_copy<Array, I>(iter: I) -> Option<Array>
    where I: IntoIterator<Item = Array::Item>,
          Array: IsArray,
          Array::Item : Copy {
    // We are sure to initialize the whole array here,
    // and we do not read from the array till then, so this is safe.
    let mut ret: Array = unsafe { mem::uninitialized() };
    let mut count = 0;
    for item in iter.into_iter().take(Array::len()) {
        Array::set(&mut ret, count, item);
        count += 1;
    }
    // crucial for safety!
    if count == Array::len() {
        Some(ret)
    } else {
        None
    }
}

macro_rules! impl_is_array {
    ($($size:expr)+) => ($(
        unsafe impl<T> IsArray for [T; $size] {
            type Item = T;
            #[inline]
            fn set(&mut self, idx: usize, value: Self::Item) {
                mem::forget(mem::replace(&mut self[idx], value));
            }

            #[inline]
            fn len() -> usize {
                $size
            }
        }
    )+)
}

// lol

impl_is_array! {
     0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
    16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    96 97 98 99 100 101 102 103 104 105 106 107 108
    109 110 111 112 113 114 115 116 117 118 119 120
    121 122 123 124 125 126 127 128
}