1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
//! A sentinel-based, heapless, `Vec`-like type.
//!
//! Arrays are great, because they do not require allocation.
//! But arrays are fixed-size.
//!
//! Slices are great, because you can make them smaller.
//! But slices aren't `Sized`.
//!
//! Vectors are great, because you can make them bigger.
//! But vectors require allocation.
//!
//! This type provides a type that acts like a vector but is represented exactly like an array.
//! Unlike other array-backed vector-like types, but like C-style strings and arrays, `Arrav` uses
//! a sentinel value (dictated by [`Sentinel`]) to indicate unoccupied elements. This makes `push`
//! and `pop` a little slower, but avoids having to store the length separately. The trade-off is
//! that the sentinel value can no longer be stored in the array.
//!
//! `Arrav` is intended for when you have a _small_ but variable number of _small_ values that you
//! want to store compactly (e.g., because they're going to be stored in a large number of
//! elements). This is also why the "search" for the sentinel value to determine the array's length
//! (and thus for `push` and `pop`) is unlikely to matter in practice.
//!
//! Unlike C-style strings and arrays, which use `NULL` as the sentinel, `Arrav` uses the _max_
//! value of the type (like `std::u8::MAX`). This means that unless you are saturating the type's
//! range, you won't even notice the sentinel.
//!
//! # Semi-Important Tidbits
//!
//! **This crate uses the highly experimental const generics feature, and requires nightly.**
//!
//! The crate supports `no_std` environments without `alloc`. Just turn off the `std` feature.
//!
//! Wondering why the name? Arrav looks like the word "Array", but with "a bit chopped off" 🤷
//!
//! # Examples
//!
//! ```
//! use arrav::Arrav;
//! let mut av = Arrav::<_, 4>::new();
//! assert_eq!(av.capacity(), 4);
//! assert!(av.is_empty());
//!
//! av.try_push(1).unwrap();
//! av.try_push(2).unwrap();
//! av.try_push(std::i32::MAX).unwrap_err();
//!
//! assert_eq!(av.len(), 2);
//! assert_eq!(av[0], 1);
//!
//! assert_eq!(av.pop(), Some(2));
//! assert_eq!(av.len(), 1);
//!
//! av.set(0, 7).unwrap();
//! assert_eq!(av[0], 7);
//!
//! av.extend([1, 2, 3].iter().copied());
//!
//! for x in &av {
//!     println!("{}", x);
//! }
//! assert_eq!(av, [7, 1, 2, 3]);
//!
//! assert_eq!(av.len(), av.capacity());
//! av.try_push(3).unwrap_err();
//! ```
//!
//! The [`avec!`] macro is provided to make initialization more convenient:
//!
//! ```
//! use arrav::avec;
//! let av = avec![1, 2, 3];
//! assert_eq!(av.capacity(), 3);
//! assert_eq!(av, [1, 2, 3]);
//! ```
//!
//! It can also initialize each element of a `Arrav<T>` with a given value.
//! This may be more efficient than performing allocation and initialization
//! in separate steps, especially when initializing a vector of zeros:
//!
//! ```
//! use arrav::{Arrav, avec};
//! let av = arrav::avec![0; 5];
//! assert_eq!(av, [0, 0, 0, 0, 0]);
//!
//! // The following is equivalent, but potentially slower:
//! let mut av1: Arrav<_, 5> = Arrav::new();
//! av1.resize(5, 0);
//! assert_eq!(av, av1);
//! ```

#![feature(
    const_generics,
    const_generic_impls_guard,
    const_fn,
    const_if_match,
    const_panic,
    slice_index_methods
)]
#![cfg_attr(feature = "specialization", feature(min_specialization))]
#![allow(incomplete_features)]
#![deny(missing_docs, unreachable_pub)]
#![warn(rust_2018_idioms, intra_doc_link_resolution_failure)]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "std", deny(missing_debug_implementations))]

/// `Arrav` error types.
pub mod errors;
/// `Arrav` iterator types.
pub mod iter;
mod macros;
mod traits;

use core::ops;

/// A `Vec`-like type backed only by an array.
///
/// # Sentinels
///
/// `Arrav<T>` uses a [sentinel value](Sentinel) for each type `T` to indicate the end of the
/// array. For this reason, you can never insert a [`T::SENTINEL`](Sentinel::SENTINEL) into an
/// `Arrav<T>` — it would make the list be in an inconsistent state! All safe methods on `Arrav`
/// return an error if you attempt to insert the sentinel value for the array's type, or they panic
/// if no `Result` return type is provided.
///
/// # Representation
///
/// In memory, an `Arrav<T, N>` is represented exactly like a `[T; N]`.
///
/// # Indexing
///
/// The `Arrav` type allows to access values by index, because it implements the
/// [`Index`] trait. An example might help:
///
/// ```
/// let v = arrav::avec![0, 2, 4, 6];
/// println!("{}", v[1]); // will display '2'
/// ```
///
/// However be careful: if you try to access an index which isn't in the `Arrav`,
/// as your code will panic! You cannot do this:
///
/// ```no_run,should_panic
/// # // this is no_run since tarpaulin can't handle should_panic doctests
/// let v = arrav::avec![0, 2, 4, 6];
/// println!("{}", v[6]); // it will panic!
/// ```
///
/// Use [`get`] if you want to check whether the index is in the `Arrav`.
///
/// # Slicing
///
/// You can slice an `Arrav` just like you would an array.
/// To get a slice, use `&`. Example:
///
/// ```
/// fn read_slice(_: &[usize]) { /* .. */ }
///
/// let v = vec![0, 1];
/// read_slice(&v);
///
/// // ... and that's all!
/// // you can also do it like this:
/// let x : &[usize] = &v;
/// ```
///
/// You can also get a sub-slice using `&[Range]`:
///
/// ```
/// fn read_slice(_: &[usize]) { /* .. */ }
///
/// let v = vec![0, 1, 2];
/// read_slice(&v[1..2]);
/// ```
///
/// In Rust, it's more common to pass slices as arguments rather than vectors
/// when you just want to provide a read access.
///
/// # Mutability
///
/// Since an `Arrav<T>` cannot hold all legal values of `T` (specifically, not the sentinel value),
/// you cannot safely get mutable access to the elements of the arrav. Instead, you must use
/// [`set`], which returns an error if the sentinel value is inserted, or the unsafe [`get_mut`]
/// method.
#[derive(Copy, Clone, Hash)]
#[repr(transparent)]
pub struct Arrav<T: Copy, const N: usize>
where
    [T; N]: core::array::LengthAtMost32,
{
    ts: [T; N],
}

/// A type that has a sentinel value that can be used to indicate termination in [`Arrav`].
pub trait Sentinel: PartialEq + Copy {
    /// The sentinel value for a type used to indicate termination in [`Arrav`].
    const SENTINEL: Self;
}

// === constructors ===

impl<T, const N: usize> Arrav<T, N>
where
    T: Copy + Sentinel,
    [T; N]: core::array::LengthAtMost32,
{
    /// Constructs a new, empty `Arrav<T, N>`.
    ///
    /// You will generally want to specify the capacity of the `Arrav` when you construct it:
    ///
    /// ```
    /// # #![allow(unused_mut)]
    /// # use arrav::Arrav;
    /// let mut av: Arrav<i32, 4> = Arrav::new();
    /// ```
    ///
    /// You can often give `_` instead of the type (here `i32`), but this [will not work] for the
    /// capacity.
    ///
    ///   [will not work]: https://github.com/rust-lang/rust/issues/70754
    pub const fn new() -> Self {
        Arrav {
            ts: [T::SENTINEL; N],
        }
    }

    /// Constructs a new `Arrav<T, N>` and fills it with copies of `e`.
    ///
    /// You will generally want to specify the capacity of the `Arrav` when you construct it:
    ///
    /// ```
    /// # #![allow(unused_mut)]
    /// # use arrav::Arrav;
    /// let mut av: Arrav<_, 4> = Arrav::repeat(3).unwrap();
    /// ```
    // TODO: this can be const once we can match against associated consts
    pub fn repeat(e: T) -> Result<Self, errors::IsSentinel<T>>
    where
        T: Copy,
    {
        match e {
            e if e == T::SENTINEL => Err(errors::IsSentinel(e)),
            _ => Ok(Arrav { ts: [e; N] }),
        }
    }

    // TODO: one day this can be const, and then we make it pub
    pub(crate) fn from_array(arr: [T; N]) -> Result<Self, ([T; N], errors::IsSentinel<T>)> {
        for t in &arr {
            if t == &T::SENTINEL {
                return Err((arr, errors::IsSentinel(*t)));
            }
        }
        Ok(Self { ts: arr })
    }
}

impl<T, const N: usize> Arrav<T, N>
where
    T: Copy,
    [T; N]: core::array::LengthAtMost32,
{
    /// Constructs a new `Arrav<T, N>` directly from a backing array.
    ///
    /// # Safety
    ///
    /// This method does not check that `T::SENTINEL` only appears in a suffix of the array's
    /// elements. If it appears elsewhere, methods will do strange things.
    pub const unsafe fn from_array_unchecked(arr: [T; N]) -> Self {
        Self { ts: arr }
    }
}

// === meta ===

impl<T, const N: usize> Arrav<T, N>
where
    T: Copy,
    [T; N]: core::array::LengthAtMost32,
{
    /// Returns the number of elements the `Arrav` can hold without
    /// reallocating.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::Arrav;
    /// let av: Arrav<i32, 10> = Arrav::new();
    /// assert_eq!(av.capacity(), 10);
    /// ```
    pub const fn capacity(&self) -> usize {
        N
    }
}

impl<T, const N: usize> Arrav<T, N>
where
    T: Copy + Sentinel,
    [T; N]: core::array::LengthAtMost32,
{
    /// Returns the number of elements in the `Arrav`, also referred to
    /// as its 'length'.
    ///
    /// Since the `Arrav` does not store the number of non-sentinel elements, it must search the
    /// elements of the backing array for the first sentinel in order to compute the length. This
    /// should be very fast for small `N`, but may become a bottleneck at large `N`.
    ///
    /// # Examples
    ///
    /// ```
    /// let av = arrav::avec![1, 2, 3];
    /// assert_eq!(av.len(), 3);
    /// ```
    #[inline]
    pub fn len(&self) -> usize
    where
        Self: SpecializedLen,
    {
        self.fast_len()
    }

    /// Returns `true` if the `Arrav` contains no elements.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::Arrav;
    /// let mut v: Arrav<_, 4> = Arrav::new();
    /// assert!(v.is_empty());
    ///
    /// v.try_push(1).unwrap();
    /// assert!(!v.is_empty());
    /// ```
    // TODO: this can be const once we can match on SENTINEL
    pub fn is_empty(&self) -> bool {
        N == 0 || self.ts[0] == T::SENTINEL
    }

    /// Returns an iterator over the elements.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::avec;
    /// let x = avec![1, 2, 4];
    /// let mut iterator = x.iter();
    ///
    /// assert_eq!(iterator.next(), Some(1));
    /// assert_eq!(iterator.next(), Some(2));
    /// assert_eq!(iterator.next(), Some(4));
    /// assert_eq!(iterator.next(), None);
    /// ```
    pub const fn iter(&self) -> iter::ArravIter<T, N> {
        iter::ArravIter::new(*self)
    }
}

// === accessors ===

impl<T: Copy, const N: usize> Arrav<T, N>
where
    T: Copy + Sentinel,
    [T; N]: core::array::LengthAtMost32,
{
    /// Gets a reference to the element at position `index`.
    ///
    /// Returns `None` if `index` is greater than or equal to the arrav's [length](len).
    #[inline]
    // TODO: once we can match on SENTINEL, this can be const
    pub fn get(&self, index: usize) -> Option<&T> {
        if index >= self.capacity() {
            None
        } else {
            match unsafe { self.ts.get_unchecked(index) } {
                t if *t == T::SENTINEL => None,
                t => Some(t),
            }
        }
    }

    /// Gets a reference to the slice of elements whose indices fall in the given range.
    ///
    /// Returns `None` if the range does not fall within the bounds of the `Arrav`.
    #[inline]
    pub fn get_range(&self, index: ops::Range<usize>) -> Option<&[T]> {
        if index.start > index.end
            || index.end > self.capacity()
            || (index.end != 0 && *unsafe { self.get_unchecked(index.end - 1) } == T::SENTINEL)
        {
            None
        } else {
            unsafe { Some(self.get_unchecked_range(index)) }
        }
    }

    /// Sets the value at `index` to `value`.
    ///
    /// Returns an error if `value` is the [sentinel value](Sentinel).
    ///
    /// # Panics
    ///
    /// Panics if `index` is outside the bounds of the `Arrav`.
    #[inline]
    // TODO: once we can match on SENTINEL, this can be const
    pub fn set(&mut self, index: usize, value: T) -> Result<(), errors::IsSentinel<T>> {
        if value == T::SENTINEL {
            return Err(errors::IsSentinel(value));
        }

        if index >= self.capacity() {
            errors::index_len_fail(index, self.len());
        } else {
            match unsafe { self.ts.get_unchecked_mut(index) } {
                ot if *ot == T::SENTINEL => {
                    errors::index_len_fail(index, self.len());
                }
                ot => {
                    *ot = value;
                }
            }
        }

        Ok(())
    }
}

// === mutators ===

impl<T, const N: usize> Arrav<T, N>
where
    T: Copy + Sentinel,
    [T; N]: core::array::LengthAtMost32,
{
    /// Appends an element to the back of the `Arrav`.
    ///
    /// Returns `Err` if the provided value is `T`'s [sentinel value], or if the `Arrav` is already
    /// full.
    ///
    ///   [sentinel value](Sentinel)
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::Arrav;
    /// let mut av: Arrav<i32, 3> = Arrav::new();
    /// av.try_push(1).unwrap();
    /// av.try_push(2).unwrap();
    /// assert_eq!(av, [1, 2]);
    ///
    /// // this fails since it is pushing the sentinel value
    /// av.try_push(std::i32::MAX).unwrap_err();
    ///
    /// // this fills the arrav to capacity
    /// av.try_push(3).unwrap();
    ///
    /// // this fails since the arrav is full
    /// av.try_push(4).unwrap_err();
    /// ```
    #[inline]
    pub fn try_push(&mut self, t: T) -> Result<(), errors::PushError<T>> {
        if t == T::SENTINEL {
            return Err(errors::PushError {
                kind: errors::PushErrorKind::IsSentinel,
                item: t,
            });
        }
        let i = self.len();
        if i == self.capacity() {
            Err(errors::PushError {
                kind: errors::PushErrorKind::Full,
                item: t,
            })
        } else {
            debug_assert!(self.ts[i] == T::SENTINEL);
            debug_assert!(i == 0 || self.ts[i - 1] != T::SENTINEL);
            self.ts[i] = t;
            Ok(())
        }
    }

    /// Removes the last element from the `Arrav` and returns it, or [`None`] if it
    /// is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::avec;
    /// let mut av = avec![1, 2, 3];
    /// assert_eq!(av.pop(), Some(3));
    /// assert_eq!(av, [1, 2]);
    /// assert_eq!(av.pop(), Some(2));
    /// assert_eq!(av.pop(), Some(1));
    /// assert_eq!(av.pop(), None);
    /// ```
    #[inline]
    pub fn pop(&mut self) -> Option<T> {
        let i = self.len();
        if i == 0 {
            None
        } else {
            let i = i - 1;
            debug_assert!(self.ts[i] != T::SENTINEL);
            debug_assert!(i == self.capacity() - 1 || self.ts[i + 1] == T::SENTINEL);
            Some(core::mem::replace(&mut self.ts[i], T::SENTINEL))
        }
    }

    /// Clears the `Arrav`, removing all values.
    ///
    /// Note that this method has no effect on the allocated capacity
    /// of the `Arrav`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::avec;
    /// let mut v = avec![1, 2, 3];
    ///
    /// v.clear();
    ///
    /// assert!(v.is_empty());
    /// ```
    pub fn clear(&mut self) {
        for i in 0..self.capacity() {
            match unsafe { self.get_unchecked_mut(i) } {
                t if t == &T::SENTINEL => break,
                t => *t = T::SENTINEL,
            }
        }
    }

    /// Increases the capacity of an `Arrav` by moving to a larger backing array.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::{Arrav, avec};
    /// let v = avec![1];
    /// assert_eq!(v.capacity(), 1);
    /// let v: Arrav<_, 3> = v.expand();
    /// assert_eq!(v.capacity(), 3);
    /// ```
    ///
    /// # Panics
    ///
    /// Panics if `N2 < N`.
    ///
    /// ```no_run,should_panic
    /// # // this is no_run since tarpaulin can't handle should_panic doctests
    /// # use arrav::{Arrav, avec};
    /// let v = avec![1, 2, 3];
    /// assert_eq!(v.capacity(), 3);
    /// let v: Arrav<_, 1> = v.expand();
    /// ```
    // TODO: one day, this can be const, and the should_panic above can be compile_fail
    #[inline]
    pub fn expand<const N2: usize>(self) -> Arrav<T, N2>
    where
        [T; N2]: core::array::LengthAtMost32,
    {
        assert!(
            N2 >= N,
            "cannot expand from {} into smaller array {}",
            N,
            N2
        );

        let mut new: Arrav<T, N2> = Arrav::new();
        // safety: N2 > N
        unsafe { core::intrinsics::copy_nonoverlapping(self.ts.as_ptr(), new.ts.as_mut_ptr(), N) };
        new
    }

    /// Resizes the `Arrav` in-place so that `len` is equal to `new_len`.
    ///
    /// If `new_len` is greater than `len`, the `Arrav` is extended by the
    /// difference, with each additional slot filled with `value`.
    /// If `new_len` is less than `len`, the `Arrav` is simply truncated.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::{Arrav, avec};
    /// let mut v: Arrav<_, 3> = avec![1].expand();
    /// v.resize(3, 2);
    /// assert_eq!(v, [1, 2, 2]);
    ///
    /// let mut v = avec![1, 2, 3, 4];
    /// v.resize(2, 0);
    /// assert_eq!(v, [1, 2]);
    /// ```
    pub fn resize(&mut self, new_len: usize, value: T) -> Result<(), errors::IsSentinel<T>> {
        assert!(
            new_len <= self.capacity(),
            "asked to resize beyond capacity"
        );
        if value == T::SENTINEL {
            return Err(errors::IsSentinel(value));
        }
        // set everything before new_len
        for i in 0..new_len {
            let t = unsafe { self.ts.get_unchecked_mut(i) };
            if *t == T::SENTINEL {
                *t = value;
            }
        }
        // clear everything beyond new_len
        for i in new_len..self.capacity() {
            let t = unsafe { self.ts.get_unchecked_mut(i) };
            if *t == T::SENTINEL {
                break;
            }
            *t = T::SENTINEL;
        }

        Ok(())
    }

    /// Creates an `Arrav` from an iterator.
    ///
    /// Returns `Err` if one of the values in the iterator is the sentinel value.
    ///
    /// # Panics
    ///
    /// Panics if the iterator yields more than `N` elements.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::{Arrav, avec};
    /// use std::iter::FromIterator;
    /// let five_fives = std::iter::repeat(5).take(5);
    /// let v: Arrav<_, 5> = Arrav::try_from_iter(five_fives).unwrap();
    /// assert_eq!(v, avec![5, 5, 5, 5, 5]);
    ///
    /// Arrav::<_, 1>::try_from_iter(std::iter::once(std::i32::MAX)).unwrap_err();
    /// ```
    pub fn try_from_iter<I>(iter: I) -> Result<Self, errors::IsSentinel<T>>
    where
        I: IntoIterator<Item = T>,
    {
        let mut v = Arrav::new();
        let iter = iter.into_iter();
        for (i, t) in iter.enumerate() {
            if i == v.capacity() {
                panic!("iterator does not fit in Arrav<_, {}>", N)
            } else if t == T::SENTINEL {
                return Err(errors::IsSentinel(t));
            } else {
                v.ts[i] = t;
            }
        }
        Ok(v)
    }

    /// Extends an `Arrav` with elements from an iterator.
    ///
    /// Returns `Err` if one of the values in the iterator is the sentinel value. The values
    /// yielded by the iterator _before_ the sentinel value are still pushed.
    ///
    /// # Panics
    ///
    /// Panics if the capacity of the `Arrav` is exceeded.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::{Arrav, avec};
    /// let mut v: Arrav<_, 5> = Arrav::new();
    /// v.try_push(1).unwrap();
    /// v.try_extend(vec![2, 3, 4]).unwrap();
    /// assert_eq!(v, avec![1, 2, 3, 4]);
    ///
    /// v.try_extend(vec![5, std::i32::MAX]).unwrap_err();
    /// assert_eq!(v, avec![1, 2, 3, 4, 5]);
    /// ```
    pub fn try_extend<I>(&mut self, iter: I) -> Result<(), errors::IsSentinel<T>>
    where
        I: IntoIterator<Item = T>,
    {
        let start = self.len();
        let iter = iter.into_iter();
        for (i, t) in iter.enumerate() {
            if i == self.capacity() {
                panic!("iterator does not fit in Arrav<_, {}>", N)
            } else if t == T::SENTINEL {
                return Err(errors::IsSentinel(t));
            } else {
                self.ts[start + i] = t;
            }
        }
        Ok(())
    }

    /// Removes an element from the `Arrav` and returns it.
    ///
    /// The removed element is replaced by the last element of the `Arrav`.
    ///
    /// This does not preserve ordering, but is O(1).
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arrav::avec;
    /// let mut v = avec![1, 2, 3, 4];
    ///
    /// assert_eq!(v.swap_remove(1), 2);
    /// assert_eq!(v, [1, 4, 3]);
    ///
    /// assert_eq!(v.swap_remove(0), 1);
    /// assert_eq!(v, [3, 4]);
    /// ```
    pub fn swap_remove(&mut self, index: usize) -> T {
        let t = *self.get(index).unwrap_or_else(|| {
            errors::index_len_fail(index, self.len());
        });

        // find last element to swap with
        // starting at index because we know it exists
        let mut end = index;
        let mut lastt = &t;
        while end + 1 < self.capacity() {
            let t = unsafe { self.ts.get_unchecked(end + 1) };
            if t == &T::SENTINEL {
                break;
            }
            lastt = t;
            end += 1;
        }

        if end == index {
            // index is last element, so just remove it
            *unsafe { self.ts.get_unchecked_mut(index) } = T::SENTINEL;
        } else {
            // place @end at @index, then delete @end
            let lastt = *lastt;
            *unsafe { self.ts.get_unchecked_mut(index) } = lastt;
            *unsafe { self.ts.get_unchecked_mut(end) } = T::SENTINEL;
        }
        t
    }
}

// === unsafe accessors ===

impl<T: Copy, const N: usize> Arrav<T, N>
where
    T: Copy + Sentinel,
    [T; N]: core::array::LengthAtMost32,
{
    /// Gets a reference to the element at position `index`.
    ///
    /// # Safety
    ///
    /// This method does not perform any bounds checks or sentinel checks on the index.
    #[inline]
    pub unsafe fn get_unchecked(&self, index: usize) -> &T {
        self.ts.get_unchecked(index)
    }

    /// Gets a reference to the slice of elements whose indices fall in the given range.
    ///
    /// # Safety
    ///
    /// This method does not perform any bounds checks or sentinel checks on the index.
    #[inline]
    pub unsafe fn get_unchecked_range(&self, index: ops::Range<usize>) -> &[T] {
        self.ts.get_unchecked(index)
    }

    /// Gets an exclusive reference to the element at position `index`.
    ///
    /// This method _does_ perform bounds and sentinel checks.
    ///
    /// # Safety
    ///
    /// This method is unsafe, because you must ensure that you do not use the returned reference
    /// to overwrite the `T` with `T`'s sentinel value.
    #[inline]
    pub unsafe fn get_mut(&mut self, index: usize) -> Option<&mut T> {
        if index >= self.capacity() {
            None
        } else {
            match self.ts.get_unchecked_mut(index) {
                t if *t == T::SENTINEL => None,
                t => Some(t),
            }
        }
    }

    /// Gets an exclusive reference to the element at position `index`.
    ///
    /// # Safety
    ///
    /// This method does not perform bounds or sentinel checks.
    ///
    /// Like [`get_mut`], this method is also unsafe because you must ensure that you do not use
    /// the returned reference to overwrite the `T` with `T`'s sentinel value.
    #[inline]
    pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T {
        self.ts.get_unchecked_mut(index)
    }
}

// === specializations ===

// The performance of `Arrav::len` is key to the performance of `Arrav`, so we want to provide
// optimized versions of it wherever we can. Even limited specialization lets us do that:

#[doc(hidden)]
pub trait SpecializedLen {
    fn fast_len(&self) -> usize;
}

// Provide a fall-back that always applies
impl<T, const N: usize> Arrav<T, N>
where
    T: Copy + Sentinel,
    [T; N]: core::array::LengthAtMost32,
{
    #[inline]
    fn slow_len(&self) -> usize {
        match N {
            0 => 0,
            1 => {
                if self.ts[0] == T::SENTINEL {
                    0
                } else {
                    1
                }
            }
            _ => self.ts.iter().position(|v| *v == T::SENTINEL).unwrap_or(N),
        }
    }
}

impl<T, const N: usize> SpecializedLen for Arrav<T, N>
where
    T: Copy + Sentinel,
    [T; N]: core::array::LengthAtMost32,
{
    #[cfg(not(feature = "specialization"))]
    #[inline]
    fn fast_len(&self) -> usize {
        self.slow_len()
    }

    #[cfg(feature = "specialization")]
    #[inline]
    default fn fast_len(&self) -> usize {
        self.slow_len()
    }
}

macro_rules! specialize {
    ($t:ty, $width:expr, $splits:expr, $test:ident) => {
        #[cfg(feature = "specialization")]
        impl SpecializedLen for Arrav<$t, $width> {
            #[inline]
            fn fast_len(&self) -> usize {
                // binary search for the sentinel
                // it'd be nice to use slice::binary_search here, but it could find _any_ sentinel
                // value, which isn't very helpful. maybe we could search for SENTINEL - 1, and
                // then scan forward, but that gets tricky _fast_.
                let empty_at = |i| *unsafe { self.ts.get_unchecked(i) } == <$t>::SENTINEL;
                if empty_at($width / 2) {
                    // len must be < $width/2
                    if $splits == 1 {
                        0 + unsafe { self.ts.get_unchecked(0..($width/2)) }
                            .iter()
                            .position(|v| *v == <$t>::SENTINEL).unwrap_or($width / 2)
                    } else {
                        if empty_at($width / 4) {
                            // len must be < $width/4
                            0 + unsafe { self.ts.get_unchecked(0..($width/4)) }
                                .iter()
                                .position(|v| *v == <$t>::SENTINEL).unwrap_or($width / 4)
                        } else {
                            // len must be => $width/4 < $width/2
                            ($width / 4) + unsafe { self.ts.get_unchecked(($width/4)..($width/2)) }
                                .iter()
                                .position(|v| *v == <$t>::SENTINEL).unwrap_or($width / 4)
                        }
                    }
                } else {
                    // len must be >= $width/2
                    if $splits == 1 {
                        ($width / 2) + unsafe { self.ts.get_unchecked(($width/2)..$width) }
                            .iter()
                            .position(|v| *v == <$t>::SENTINEL).unwrap_or($width / 2)
                    } else {
                        if empty_at(3 * $width / 4) {
                            // len must be < 3*$width/4
                            ($width / 2) + unsafe { self.ts.get_unchecked(($width/2)..(3*$width/4)) }
                                .iter()
                                .position(|v| *v == <$t>::SENTINEL).unwrap_or($width / 4)
                        } else {
                            // len must be => 3*$width/4
                            (3 * $width / 4) + unsafe { self.ts.get_unchecked((3*$width/4)..$width) }
                                .iter()
                                .position(|v| *v == <$t>::SENTINEL).unwrap_or($width / 4)
                        }
                    }
                }
            }
        }

        #[cfg(test)]
        mod $test {
            use super::*;

            #[cfg_attr(not(feature = "specialization"), test)]
            fn test_len() {
                let mut v: Arrav<$t, $width> = avec![1; $width];
                for removed in 0..$width {
                    assert_eq!(v.len(), $width - removed);
                    assert_eq!(v.pop(), Some(1));
                }
                assert_eq!(v.len(), 0);
                assert!(v.is_empty());
                assert_eq!(v.pop(), None);
            }

            #[cfg(feature = "specialization")]
            #[test]
            fn test_specialized_len() {
                test_len()
            }
        }
    }
}

// NOTE: don't add a specialization just because it looks cool!
// here's what you do:
//
//  1. add a specialize!() call below for the [T, N] you have in mind.
//  2. add a benchmark to benches/len.rs -- the format should hopefully be obvious.
//  3. run this command to benchmark the non-specialized versions of `len`:
//     ```console
//     $ cargo bench --no-default-features --features std --bench len -- --save-baseline unoptimized
//     ```
//  4. run this command to benchmark the specialized version and compare to the baseline:
//     ```console
//     $ cargo bench --bench len -- --baseline unoptimized
//     ```
//  5. look for the "len " benchmark for the specialization you added.
//  6. if the change seems significant, make a commit that contains the output from
//     step 4 for your new specialization in the commit message. please place the
//     criterion output in a fenced code block (```), check that you don't
//     accidentally have any tabs in there, and check that the output is correctly
//     aligned.
//  7. repeat if you want to add more specializations.

specialize!(u8, 32, 2, u8_32);
specialize!(u8, 24, 2, u8_24);
specialize!(u8, 16, 2, u8_16);
specialize!(u16, 16, 2, u16_16);
specialize!(u16, 8, 2, u16_8);
specialize!(u16, 4, 1, u16_4);
specialize!(u32, 8, 2, u32_8);
specialize!(u32, 4, 1, u32_4);

// copies of the above for signed types, assuming the same benchmark results hold
specialize!(i8, 32, 2, i8_32);
specialize!(i8, 24, 2, i8_24);
specialize!(i8, 16, 2, i8_16);
specialize!(i16, 16, 2, i16_16);
specialize!(i16, 8, 2, i16_8);
specialize!(i16, 4, 1, i16_4);
specialize!(i32, 8, 2, i32_8);
specialize!(i32, 4, 1, i32_4);

macro_rules! impl_sentinel_by_max {
    ($t:tt) => {
        impl Sentinel for $t {
            const SENTINEL: Self = ::core::$t::MAX;
        }
    };
}

impl_sentinel_by_max!(u8);
impl_sentinel_by_max!(i8);
impl_sentinel_by_max!(u16);
impl_sentinel_by_max!(i16);
impl_sentinel_by_max!(u32);
impl_sentinel_by_max!(i32);
impl_sentinel_by_max!(u64);
impl_sentinel_by_max!(i64);
impl_sentinel_by_max!(u128);
impl_sentinel_by_max!(i128);
impl_sentinel_by_max!(usize);
impl_sentinel_by_max!(isize);