1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use anyhow::Result;

use crate::util;
use rand::Rng;

/// Simulate an ARIMA model time series
///
/// # Arguments
///
/// * `n` - Length of the time series
/// * `ar` - Model parameters for the AR part
/// * `ma` - Model parameters for the MA part
/// * `d` - Model parameter for the differences
/// * `noise_fn` - Function that takes a `Rng' as input and returns noise
/// * `rng` - Reference to a mutable `Rng`.
///
/// # Returns
///
/// * Output vector of length n containing the time series data.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand_distr::{Distribution, Normal};
///
/// let normal = Normal::new(0.0, 2.0).unwrap();
///
/// let x = arima::sim::arima_sim(
///     100,
///     Some(&[0.9, -0.3, 0.2]),
///     Some(&[0.4, 0.2]),
///     1,
///     &|mut rng| { normal.sample(&mut rng) },
///     &mut thread_rng()
/// ).unwrap();
/// ```
pub fn arima_sim<T: Rng>(
    n: usize,
    ar: Option<&[f64]>,
    ma: Option<&[f64]>,
    d: usize,
    noise_fn: &dyn Fn(&mut T) -> f64,
    rng: &mut T,
) -> Result<Vec<f64>> {
    let mut x: Vec<f64> = Vec::new();

    // get orders
    let ar_order = match ar {
        Some(par) => par.len(),
        None => 0_usize,
    };
    let ma_order = match ma {
        Some(par) => par.len(),
        None => 0_usize,
    };

    // create some noise for the startup
    let burn_in = ar_order + ma_order + 10;
    for _ in 0..burn_in + n {
        let e = noise_fn(rng);
        x.push(e);
    }

    // create further noise and calculate MA part
    if ma_order > 0 {
        let ma = ma.unwrap();
        // x currently contains only noise
        // copy into noise vector for MA regression
        let noise = x.clone();
        // the first 0..ma_order elements are not regressed
        for i in ma_order..burn_in + n {
            for j in 0..ma_order {
                x[i] += ma[j] * noise[i - j - 1];
            }
        }

        // set the un-regressed first 0..ma_order elements to zero
        for a in x.iter_mut().take(ma_order) {
            *a = 0.0
        }
    }

    // calculate AR part
    if ar_order > 0 {
        let ar = ar.unwrap();

        // the first 0..ma_order+ar_order are not regressed
        for i in ma_order + ar_order..burn_in + n {
            for j in 0..ar_order {
                x[i] += ar[j] * x[i - j - 1];
            }
        }
    }

    // remove burn_in part from vector, calculate differences
    if d > 0 {
        // also remove last d elements as there will be d zeros at the start
        x = util::diffinv(&x[burn_in..x.len() - d], d);
    } else {
        x.drain(0..burn_in);
    }

    Ok(x)
}

/// Forecast an ARIMA model time series
///
/// # Arguments
///
/// * `ts` - Time series to forecast from
/// * `n` - Length to forecast
/// * `ar` - Model parameters for the AR part
/// * `ma` - Model parameters for the MA part
/// * `d` - Model parameter for the differences
/// * `noise_fn` - Function that takes a `Rng' as input and returns noise
/// * `rng` - Reference to a mutable `Rng`.
///
/// # Returns
///
/// * Output vector of length n containing the time series data.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand_distr::{Distribution, Normal};
///
/// let normal = Normal::new(0.0, 2.0).unwrap();
///
/// let ts = [0.632, 0.594, -2.750, -5.389, -5.645, -7.672, -12.595, -18.260, -24.147, -31.427];
///
/// let x = arima::sim::arima_forecast(
///     &ts,
///     100,
///     Some(&[0.9, -0.3, 0.2]),
///     Some(&[0.4, 0.2]),
///     1,
///     &|i, mut rng| { normal.sample(&mut rng) },
///     &mut thread_rng()
/// ).unwrap();
/// ```
pub fn arima_forecast<F: Fn(usize, &mut T) -> f64, T: Rng>(
    ts: &[f64],
    n: usize,
    ar: Option<&[f64]>,
    ma: Option<&[f64]>,
    d: usize,
    noise_fn: &F,
    rng: &mut T,
) -> Result<Vec<f64>> {
    let n_past = ts.len();
    let mut x = ts.to_vec();

    // get orders
    let ar_order = match ar {
        Some(par) => par.len(),
        None => 0_usize,
    };
    let ma_order = match ma {
        Some(par) => par.len(),
        None => 0_usize,
    };

    // initialize forecast with noise
    for i in 0..n {
        let e = noise_fn(i, rng);
        x.push(e);
    }

    // create further noise and calculate MA part
    if ma_order > 0 {
        let ma = ma.unwrap();
        let x_ = x.clone();
        for i in n_past..n_past + n {
            for j in 0..ma_order {
                x[i] += ma[j] * x_[i - j - 1];
            }
        }
    }

    // calculate AR part
    if ar_order > 0 {
        let ar = ar.unwrap();
        for i in n_past..n_past + n {
            for j in 0..ar_order {
                x[i] += ar[j] * x[i - j - 1];
            }
        }
    }

    // remove burn_in part from vector, calculate differences
    if d > 0 {
        x = util::diffinv(&x[n_past..x.len()], d);
        // drop the d zeros at the start
        x.drain(0..d);
    } else {
        x.drain(0..n_past);
    }

    Ok(x)
}