1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
pub mod hash;

use bonsai::{
    children, expand, first_leaf, last_leaf, log2, relative_depth, subtree_index_to_general,
};
use hash::{hash, zero_hash};
use std::cmp::min;
use std::collections::{BTreeMap, BTreeSet, BinaryHeap};
use std::convert::From;

pub type K = u128;
pub type V = [u8; 32];

#[derive(Debug, Default, PartialEq)]
pub struct Tree {
    map: BTreeMap<K, V>,
}

impl Tree {
    pub fn new() -> Self {
        Self {
            map: BTreeMap::new(),
        }
    }

    pub fn to_subtree(mut self, root: K) -> Self {
        self.map = self
            .map
            .into_iter()
            .map(|(k, v)| (subtree_index_to_general(root, k), v))
            .collect();

        self
    }

    pub fn get(&self, key: &K) -> Option<&V> {
        self.map.get(key)
    }

    pub fn insert(&mut self, key: K, val: V) -> Option<V> {
        self.map.insert(key, val)
    }

    pub fn keys(&self) -> BTreeSet<K> {
        self.map.keys().cloned().collect()
    }

    pub fn fill_subtree(&mut self, root: K, depth: u32, default: &V) {
        let mut keys: BinaryHeap<u128> = self
            .keys()
            .intersection(&self._leaf_keys(root, depth))
            .cloned()
            .collect();

        while let Some(key) = keys.pop() {
            if key <= root {
                break;
            }

            let (left, right, parent) = expand(key);

            if !self.map.contains_key(&parent) {
                let mut get_or_insert = |n: K| -> V {
                    *self.map.entry(n).or_insert(zero_hash(
                        default,
                        relative_depth(n, first_leaf(root, depth as u128)),
                    ))
                };

                let left = get_or_insert(left);
                let right = get_or_insert(right);

                self.map.insert(parent, hash(&left, &right));
                keys.push(parent);
            }
        }
    }

    pub fn trim(mut self) -> Self {
        self._trim();
        self
    }

    pub fn raw_insert_bytes(&mut self, rooted_at: K, bytes: Vec<u8>) {
        let len = bytes.len() as K;
        let padded_len = len
            .checked_next_power_of_two()
            .expect("compiled code to fit in tree");
        let depth = log2(padded_len / 32);
        let first: K = first_leaf(rooted_at, depth);

        for i in (0..len).step_by(32) {
            let begin = i as usize;
            let end = min(i + 32, len) as usize;

            let chunk_len = if i + 32 < len {
                32
            } else {
                if end % 32 != 0 {
                    end % 32
                } else {
                    32
                }
            };

            let mut buf = [0u8; 32];
            buf[0..chunk_len].copy_from_slice(&bytes[begin..end]);

            self.map.insert(first + (i / 32), buf);
        }
    }

    pub fn insert_bytes(&mut self, rooted_at: K, bytes: Vec<u8>) {
        let len = bytes.len() as K;
        let padded_len = len
            .checked_next_power_of_two()
            .expect("compiled code to fit in tree");
        let depth = log2(padded_len / 32);

        self.raw_insert_bytes(rooted_at, bytes);
        self.fill_subtree(rooted_at, depth as u32, &[0; 32]);
        self._trim();
    }

    pub fn insert_subtree(&mut self, rooted_at: K, tree: Tree) {
        for (k, v) in tree.to_subtree(rooted_at).map {
            self.insert(k, v);
        }
    }

    fn _leaf_keys(&self, root: K, depth: u32) -> BTreeSet<K> {
        (first_leaf(root, depth as u128)..=last_leaf(root, depth as u128)).collect()
    }

    fn _trim(&mut self) {
        for key in self.keys() {
            let (left, right) = children(key);

            if self.map.contains_key(&left) || self.map.contains_key(&right) {
                self.map.remove(&key);
            }
        }
    }
}

impl From<Tree> for BTreeMap<K, V> {
    fn from(tree: Tree) -> BTreeMap<K, V> {
        tree.map
    }
}

impl From<BTreeMap<K, V>> for Tree {
    fn from(map: BTreeMap<K, V>) -> Tree {
        Tree { map }
    }
}