1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
use bitpos::BitPos;
use bitwidth::BitWidth;
use errors::{Error, Result};
use traits::{Width};
use checks;

use std::ops::{
	Not,
	BitAnd,
	BitOr,
	BitXor,
	BitAndAssign,
	BitOrAssign,
	BitXorAssign,

	Add,
	Sub,
	Mul,
	Div,
	Rem
};

/// The type for the internal `Digit` representation.
/// 
/// Must be exactly half the size of `DoubleDigitRepr`.
pub(crate) type DigitRepr = u64;

/// The type for the internal `DoubleDigit` representation.
/// 
/// Must be exactly double the size of `DigitRepr`.
pub(crate) type DoubleDigitRepr = u128;

/// The amount of bits within a single `Digit`.
pub(crate) const BITS: usize = 64;

/// The `DoubleDigit` base offset.
const BASE_REPR: DoubleDigitRepr = 1 << BITS;

pub(crate) const BASE: DoubleDigit = DoubleDigit(BASE_REPR);

const REPR_ONE : DigitRepr = 0x1;
const REPR_ZERO: DigitRepr = 0x0;
const REPR_ONES: DigitRepr = !REPR_ZERO;

pub(crate) const ONE : Digit = Digit(REPR_ONE);
pub(crate) const ZERO: Digit = Digit(REPR_ZERO);
pub(crate) const ONES: Digit = Digit(REPR_ONES);

/// Represents the set or unset state of a bit within an `ApInt`.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum Bit {
	/// Unset, or `false` or `off` state.
	Unset = 0,
	/// Set, or `true` or `on` state.
	Set = 1
}

impl Bit {
	/// Converts this `Bit` into a `bool`.
	/// 
	/// - `Unset` to `false`
	/// - `Set` to `true`
	#[inline]
	pub fn to_bool(self) -> bool {
		match self {
			Bit::Unset => false,
			Bit::Set   => true
		}
	}
}

impl From<bool> for Bit {
	#[inline]
	fn from(flag: bool) -> Bit {
		if flag { Bit::Set } else { Bit::Unset }
	}
}

impl From<Bit> for bool {
	#[inline]
	fn from(bit: Bit) -> bool {
		bit.to_bool()
	}
}

/// A (big) digit within an `ApInt` or similar representations.
/// 
/// It uses the `DoubleDigit` as computation unit.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub(crate) struct Digit(pub DigitRepr);

use std::fmt;

impl fmt::Binary for Digit {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		self.repr().fmt(f)
	}
}

impl fmt::Octal for Digit {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		self.repr().fmt(f)
	}
}

impl fmt::LowerHex for Digit {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		self.repr().fmt(f)
	}
}

impl fmt::UpperHex for Digit {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		self.repr().fmt(f)
	}
}

/// A doubled digit.
/// 
/// This is used as a compute unit for `Digit`'s since many `Digit` arithmetic operations
/// may overflow or have carries this is required in order to not lose those overflow- and underflow values.
/// 
/// Has wrapping arithmetics for better machine emulation and improved performance.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub(crate) struct DoubleDigit(pub DoubleDigitRepr);

impl Add for DoubleDigit {
	type Output = DoubleDigit;

	fn add(self, rhs: DoubleDigit) -> Self::Output {
		DoubleDigit(self.repr().wrapping_add(rhs.repr()))
	}
}

impl Sub for DoubleDigit {
	type Output = DoubleDigit;

	fn sub(self, rhs: DoubleDigit) -> Self::Output {
		DoubleDigit(self.repr().wrapping_sub(rhs.repr()))
	}
}

impl Mul for DoubleDigit {
	type Output = DoubleDigit;

	fn mul(self, rhs: DoubleDigit) -> Self::Output {
		DoubleDigit(self.repr().wrapping_mul(rhs.repr()))
	}
}

impl Div for DoubleDigit {
	type Output = DoubleDigit;

	fn div(self, rhs: DoubleDigit) -> Self::Output {
		DoubleDigit(self.repr().wrapping_div(rhs.repr()))
	}
}

impl Rem for DoubleDigit {
	type Output = DoubleDigit;

	fn rem(self, rhs: DoubleDigit) -> Self::Output {
		DoubleDigit(self.repr().wrapping_rem(rhs.repr()))
	}
}

impl DoubleDigit {
	/// Returns the value as its internal representation.
	#[inline]
	pub(crate) fn repr(self) -> DoubleDigitRepr {
		self.0
	}

	/// Returns the hi part of this `DoubleDigit` as `Digit`.
	#[inline]
	pub(crate) fn hi(self) -> Digit {
		Digit((self.0 >> BITS) as DigitRepr)
	}

	/// Returns the hi part of this `DoubleDigit` as `Digit`.
	#[inline]
	pub(crate) fn lo(self) -> Digit {
		Digit(self.0 as DigitRepr)
	}

	/// Returns the hi and lo parts of this `DoubleDigit` as `Digit` each.
	#[inline]
	pub(crate) fn hi_lo(self) -> (Digit, Digit) {
		(self.hi(), self.lo())
	}

	/// Returns a `DoubleDigit` from the given hi and lo raw `Digit` parts.
	#[inline]
	pub(crate) fn from_hi_lo(hi: Digit, lo: Digit) -> DoubleDigit {
		DoubleDigit((DoubleDigitRepr::from(hi.repr()) << BITS) | DoubleDigitRepr::from(lo.repr()))
	}
}

/// # Constructors
impl Digit {
	/// Creates a digit that represents the value `0`.
	/// 
	/// **Note:** In twos-complement this means that all bits are `0`.
	#[inline]
	pub fn zero() -> Digit { ZERO }

	/// Creates a digit that represents the value `1`.
	#[inline]
	pub fn one() -> Digit { ONE	}

	/// Returns `true` if this `Digit` is zero (`0`).
	#[inline]
	pub fn is_zero(self) -> bool { self == ZERO }

	/// Returns `true` if this `Digit` is one (`1`).
	#[inline]
	pub fn is_one(self) -> bool { self == ONE }

	/// Returns `true` if this `Digit` has all bits set.
	#[inline]
	pub fn is_all_set(self) -> bool { self == ONES }

	/// Creates a digit where all bits are initialized to `1`.
	#[inline]
	pub fn all_set() -> Digit { ONES }
}

/// # Utility & helper methods.
impl Digit {
	/// Returns the `Digit`'s value as internal representation.
	#[inline]
	pub fn repr(self) -> DigitRepr {
		self.0
	}

	/// Returns a mutable reference to the underlying representation
	/// of this `Digit`.
	#[inline]
	pub fn repr_mut(&mut self) -> &mut DigitRepr {
		&mut self.0
	}

	/// Returns the `DoubleDigit` representation of this `Digit`.
	#[inline]
	pub(crate) fn dd(self) -> DoubleDigit {
		DoubleDigit(DoubleDigitRepr::from(self.repr()))
	}
}

impl Digit {
	/// Validates the given `BitWidth` for `Digit` instances and returns
	/// an appropriate error if the given `BitWidth` is invalid.
	fn verify_valid_bitwidth<W>(self, width: W) -> Result<()>
		where W: Into<BitWidth>
	{
		let width = width.into();
		if width.to_usize() > BITS {
			return Err(Error::invalid_bitwidth(width.to_usize())
				.with_annotation(format!("Encountered invalid `BitWidth` for operating \
				                          on a `Digit`.")))
		}
		Ok(())
	}

	/// Truncates this `Digit` to the given `BitWidth`.
	/// 
	/// This operation just zeros out any bits on this `Digit` 
	/// with bit positions above the given `BitWidth`.
	/// 
	/// # Note
	/// 
	/// This is equal to calling `Digit::retain_last_n`.
	/// 
	/// # Errors
	/// 
	/// - If the given `BitWidth` is invalid for `Digit` instances.
	pub(crate) fn truncate_to<W>(&mut self, to: W) -> Result<()>
		where W: Into<BitWidth>
	{
		let to = to.into();
		self.verify_valid_bitwidth(to)?;
		self.0 &= !(REPR_ONES << to.to_usize());
		Ok(())
	}

	/// Sign extends this `Digit` from a given `BitWidth` to `64` bits.
	/// 
	/// # Note
	/// 
	/// - This can be truncated again to a real target `BitWidth` afterwards if
	///   the users wishes to.
	/// 
	/// - Implementation inspired by
	///   [Bit Twiddling Hacks](https://graphics.stanford.edu/~seander/bithacks.html#VariableSignExtend).
	/// 
	/// # Errors
	/// 
	/// - If the given `BitWidth` is invalid for `Digit` instances.
	pub(crate) fn sign_extend_from<W>(&mut self, from: W) -> Result<()>
		where W: Into<BitWidth>,
	{
		let from = from.into();
		self.verify_valid_bitwidth(from)?;

		let b = from.to_usize();    // number of bits representing the number in x
		let x = self.repr() as i64; // sign extend this b-bit number to r
		let m: i64 = 1 << (b - 1);       // mask can be pre-computed if b is fixed
		// x = x & ((1 << b) - 1);  // (Skip this if bits in x above position b are already zero.)
		                            // We don't need this step since this condition is an invariant of `Digit`.
		let r: i64 = (x ^ m).wrapping_sub(m);   // resulting sign-extended number
		self.0 = r as u64;
		Ok(())
	}
}

impl Width for Digit {
	#[inline]
	fn width(&self) -> BitWidth {
		BitWidth::w64()
	}
}

impl Width for DoubleDigit {
	#[inline]
	fn width(&self) -> BitWidth {
		BitWidth::w128()
	}
}

/// # Bitwise access
impl Digit {
	/// Returns the least significant `Bit` of this `Digit`.
	/// 
	/// Note: This may be useful to determine if a `Digit`
	///       represents an even or an uneven number for example.
	#[inline]
	pub fn least_significant_bit(self) -> Bit {
		Bit::from((self.repr() & 0x1) != 0)
	}

	/// Returns `true` if the `n`th bit is set to `1`, else returns `false`.
	/// 
	/// # Errors
	/// 
	/// If the given `n` is greater than the digit size.
	#[inline]
	pub fn get<P>(self, pos: P) -> Result<Bit>
		where P: Into<BitPos>
	{
		let pos = pos.into();
		checks::verify_bit_access(&self, pos)?;
		Ok(Bit::from(((self.repr() >> pos.to_usize()) & 0x01) == 1))
	}

	/// Sets the bit at position `pos` to `1`.
	/// 
	/// # Errors
	/// 
	/// If the given `n` is greater than the digit size.
	#[inline]
	pub fn set<P>(&mut self, pos: P) -> Result<()>
		where P: Into<BitPos>
	{
		let pos = pos.into();
		checks::verify_bit_access(self, pos)?;
		Ok(self.0 |= 0x01 << pos.to_usize())
	}

	/// Sets the bit at position `pos` to `0`.
	/// 
	/// # Errors
	/// 
	/// If the given `n` is greater than the digit size.
	#[inline]
	pub fn unset<P>(&mut self, pos: P) -> Result<()>
		where P: Into<BitPos>
	{
		let pos = pos.into();
		checks::verify_bit_access(self, pos)?;
		Ok(self.0 &= !(0x01 << pos.to_usize()))
	}

	/// Flips the bit at position `pos`.
	/// 
	/// # Errors
	/// 
	/// If the given `n` is greater than the digit size.
	#[inline]
	pub fn flip<P>(&mut self, pos: P) -> Result<()>
		where P: Into<BitPos>
	{
		let pos = pos.into();
		checks::verify_bit_access(self, pos)?;
		Ok(self.0 ^= 0x01 << pos.to_usize())
	}

	/// Sets all bits in this digit to `1`.
	#[inline]
	pub fn set_all(&mut self) {
		self.0 |= REPR_ONES
	}

	/// Sets all bits in this digit to `0`.
	#[inline]
	pub fn unset_all(&mut self) {
		self.0 &= REPR_ZERO
	}

	/// Flips all bits in this digit.
	#[inline]
	pub fn flip_all(&mut self) {
		self.0 ^= REPR_ONES
	}

	/// Unsets all bits but the last `n` ones.
	/// 
	/// # Note
	/// 
	/// This is equal to calling `Digit::truncate_to`.
	/// 
	/// # Errors
	/// 
	/// If the given `n` is greater than the digit size.
	#[inline]
	pub fn retain_last_n(&mut self, n: usize) -> Result<()> {
		checks::verify_bit_access(self, n)?;
		Ok(self.0 &= !(REPR_ONES << n))
	}
}

/// # Bitwise operations
impl Not for Digit {
	type Output = Self;

	fn not(self) -> Self::Output {
		Digit(!self.repr())
	}
}

impl Digit {
	pub fn not_inplace(&mut self) {
		self.0 = !self.repr()
	}
}

impl BitAnd for Digit {
	type Output = Self;

	fn bitand(self, rhs: Self) -> Self::Output {
		Digit(self.repr() & rhs.repr())
	}
}

impl BitOr for Digit {
	type Output = Self;

	fn bitor(self, rhs: Self) -> Self::Output {
		Digit(self.repr() | rhs.repr())
	}
}

impl BitXor for Digit {
	type Output = Self;

	fn bitxor(self, rhs: Self) -> Self::Output {
		Digit(self.repr() ^ rhs.repr())
	}
}

// # Bitwise assign operations
impl BitAndAssign for Digit {
	fn bitand_assign(&mut self, rhs: Self) {
		self.0 &= rhs.repr()
	}
}

impl BitOrAssign for Digit {
	fn bitor_assign(&mut self, rhs: Self) {
		self.0 |= rhs.repr()
	}
}

impl BitXorAssign for Digit {
	fn bitxor_assign(&mut self, rhs: Self) {
		self.0 ^= rhs.repr()
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	mod bit {
		use super::*;

		#[test]
		fn from_bool() {
			assert_eq!(Bit::from(true) , Bit::Set);
			assert_eq!(Bit::from(false), Bit::Unset);
		}

		#[test]
		fn from_bit() {
			assert_eq!(bool::from(Bit::Set)  , true);
			assert_eq!(bool::from(Bit::Unset), false);
		}
	}

	mod double_digit {
		use super::*;

		static TEST_VALUES: &[DoubleDigitRepr] = &[0, 1, 2, 10, 42, 1337];

		#[test]
		fn ops_add() {
			fn assert_for(lhs: DoubleDigitRepr, rhs: DoubleDigitRepr) {
				assert_eq!(
					DoubleDigit(lhs) + DoubleDigit(rhs),
					DoubleDigit(lhs.wrapping_add(rhs))
				)
			}
			for &lhs in TEST_VALUES {
				for &rhs in TEST_VALUES {
					assert_for(lhs, rhs)
				}
			}
		}

		#[test]
		fn ops_sub() {
			fn assert_for(lhs: DoubleDigitRepr, rhs: DoubleDigitRepr) {
				assert_eq!(
					DoubleDigit(lhs) - DoubleDigit(rhs),
					DoubleDigit(lhs.wrapping_sub(rhs))
				)
			}
			for &lhs in TEST_VALUES {
				for &rhs in TEST_VALUES {
					assert_for(lhs, rhs)
				}
			}
		}

		#[test]
		fn ops_mul() {
			fn assert_for(lhs: DoubleDigitRepr, rhs: DoubleDigitRepr) {
				assert_eq!(
					DoubleDigit(lhs) * DoubleDigit(rhs),
					DoubleDigit(lhs.wrapping_mul(rhs))
				)
			}
			for &lhs in TEST_VALUES {
				for &rhs in TEST_VALUES {
					assert_for(lhs, rhs)
				}
			}
		}

		#[test]
		fn ops_div() {
			fn assert_for(lhs: DoubleDigitRepr, rhs: DoubleDigitRepr) {
				assert_eq!(
					DoubleDigit(lhs) / DoubleDigit(rhs),
					DoubleDigit(lhs.wrapping_div(rhs))
				)
			}
			for &lhs in TEST_VALUES {
				for &rhs in TEST_VALUES {
					// Avoid division by zero.
					if rhs != 0 {
						assert_for(lhs, rhs)
					}
				}
			}
		}

		#[test]
		fn ops_rem() {
			fn assert_for(lhs: DoubleDigitRepr, rhs: DoubleDigitRepr) {
				assert_eq!(
					DoubleDigit(lhs) % DoubleDigit(rhs),
					DoubleDigit(lhs.wrapping_rem(rhs))
				)
			}
			for &lhs in TEST_VALUES {
				for &rhs in TEST_VALUES {
					// Avoid division by zero.
					if rhs != 0 {
						assert_for(lhs, rhs)
					}
				}
			}
		}

		#[test]
		fn width() {
			for &val in TEST_VALUES {
				assert_eq!(DoubleDigit(val).width(), BitWidth::w128());
			}
		}

		#[test]
		fn repr() {
			fn assert_for(val: DoubleDigitRepr) {
				assert_eq!(DoubleDigit(val).repr(), val)
			}
			for &val in TEST_VALUES {
				assert_for(val)
			}
		}

		#[test]
		fn hi() {
			fn assert_for(input: DoubleDigitRepr, expected: DigitRepr) {
				assert_eq!(DoubleDigit(input).hi(), Digit(expected))
			}
			let test_values = &[
				(0,0),
				(1,0),
				(0x0000_0000_0000_0001_0000_0000_0000_0000, 1),
				(0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF_FFFF_FFFF),
				(0x0000_0000_0000_0000_FFFF_FFFF_FFFF_FFFF, 0),
				(0x0000_0000_FFFF_FFFF_FFFF_FFFF_0000_0000, 0xFFFF_FFFF),
				(0xFFFF_FFFF_FFFF_FFFF_0000_0000_0000_0000, 0xFFFF_FFFF_FFFF_FFFF),
				(0x0123_4567_8910_ABCD_EF00_0000_0000_0000, 0x0123_4567_8910_ABCD),
				(0x0000_0000_0000_00FE_DCBA_0198_7654_3210, 0xFE)
			];
			for &(input, expected) in test_values {
				assert_for(input, expected)
			}
		}

		#[test]
		fn lo() {
			fn assert_for(input: DoubleDigitRepr, expected: DigitRepr) {
				assert_eq!(DoubleDigit(input).lo(), Digit(expected))
			}
			let test_values = &[
				(0,0),
				(1,1),
				(0x0000_0000_0000_0001_0000_0000_0000_0000, 0),
				(0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF_FFFF_FFFF),
				(0x0000_0000_0000_0000_FFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF_FFFF_FFFF),
				(0x0000_0000_FFFF_FFFF_FFFF_FFFF_0000_0000, 0xFFFF_FFFF_0000_0000),
				(0xFFFF_FFFF_FFFF_FFFF_0000_0000_0000_0000, 0),
				(0x0123_4567_8910_ABCD_EF00_0000_0000_0000, 0xEF00_0000_0000_0000),
				(0x0000_0000_0000_00FE_DCBA_0198_7654_3210, 0xDCBA_0198_7654_3210)
			];
			for &(input, expected) in test_values {
				assert_for(input, expected)
			}
		}

		#[test]
		fn hi_lo() {
			fn assert_for(input: DoubleDigitRepr, expected_hi: DigitRepr, expected_lo: DigitRepr) {
				assert_eq!(DoubleDigit(input).hi_lo(), (Digit(expected_hi), Digit(expected_lo)))
			}
			let test_values = &[
				(0, (0, 0)),
				(1, (0, 1)),
				(0x0000_0000_0000_0001_0000_0000_0000_0000, (1, 0)),
				(0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF, (0xFFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF_FFFF_FFFF)),
				(0x0000_0000_0000_0000_FFFF_FFFF_FFFF_FFFF, (0, 0xFFFF_FFFF_FFFF_FFFF)),
				(0x0000_0000_FFFF_FFFF_FFFF_FFFF_0000_0000, (0xFFFF_FFFF, 0xFFFF_FFFF_0000_0000)),
				(0xFFFF_FFFF_FFFF_FFFF_0000_0000_0000_0000, (0xFFFF_FFFF_FFFF_FFFF, 0)),
				(0x0123_4567_8910_ABCD_EF00_0000_0000_0000, (0x0123_4567_8910_ABCD, 0xEF00_0000_0000_0000)),
				(0x0000_0000_0000_00FE_DCBA_0198_7654_3210, (0x0000_0000_0000_00FE, 0xDCBA_0198_7654_3210))
			];
			for &(input, (expected_hi, expected_lo)) in test_values {
				assert_for(input, expected_hi, expected_lo)
			}
		}

		#[test]
		fn from_hi_lo() {
			fn assert_for(hi: DigitRepr, lo: DigitRepr, expected: DoubleDigitRepr) {
				assert_eq!(DoubleDigit::from_hi_lo(Digit(hi), Digit(lo)), DoubleDigit(expected))
			}
			let test_values = &[
				(0, (0, 0)),
				(1, (0, 1)),
				(0x0000_0000_0000_0001_0000_0000_0000_0000, (1, 0)),
				(0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF, (0xFFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF_FFFF_FFFF)),
				(0x0000_0000_0000_0000_FFFF_FFFF_FFFF_FFFF, (0, 0xFFFF_FFFF_FFFF_FFFF)),
				(0x0000_0000_FFFF_FFFF_FFFF_FFFF_0000_0000, (0xFFFF_FFFF, 0xFFFF_FFFF_0000_0000)),
				(0xFFFF_FFFF_FFFF_FFFF_0000_0000_0000_0000, (0xFFFF_FFFF_FFFF_FFFF, 0)),
				(0x0123_4567_8910_ABCD_EF00_0000_0000_0000, (0x0123_4567_8910_ABCD, 0xEF00_0000_0000_0000)),
				(0x0000_0000_0000_00FE_DCBA_0198_7654_3210, (0x0000_0000_0000_00FE, 0xDCBA_0198_7654_3210))
			];
			for &(expected, (hi, lo)) in test_values {
				assert_for(hi, lo, expected)
			}
		}
	}

	mod digit {
		use super::*;

		use std::usize;

		static VALID_TEST_POS_VALUES: &[usize] = &[
			0, 1, 2, 3, 10, 32, 42, 48, 63
		];

		static INVALID_TEST_POS_VALUES: &[usize] = &[
			64, 65, 100, 1337, usize::MAX
		];

		static TEST_DIGIT_REPRS: &[DigitRepr] = &[
			digit::REPR_ZERO,
			digit::REPR_ONE,
			digit::REPR_ONES,
			0x5555_5555_5555_5555,
			0xAAAA_AAAA_AAAA_AAAA,
			0xFFFF_FFFF_0000_0000,
			0x0000_FFFF_FFFF_0000,
			0x0000_0000_FFFF_FFFF
		];

		/// Returns a digit that has every even bit set, starting at index 0.
		/// 
		/// E.g.: `0x....010101`
		fn even_digit() -> Digit {
			Digit(0x5555_5555_5555_5555)
		}

		/// Returns a digit that has every odd bit set, starting at index 0.
		/// 
		/// E.g.: `0x....101010`
		fn odd_digit() -> Digit {
			Digit(0xAAAA_AAAA_AAAA_AAAA)
		}

		#[test]
		fn repr() {
			for &val in TEST_DIGIT_REPRS {
				assert_eq!(Digit(val).repr(), val);
			}
		}

		#[test]
		fn dd() {
			for &val in TEST_DIGIT_REPRS {
				assert_eq!(Digit(val).dd(), DoubleDigit(val as DoubleDigitRepr));
			}
		}

		#[test]
		fn width() {
			assert_eq!(digit::ONES.width(), BitWidth::w64());
			assert_eq!(digit::ZERO.width(), BitWidth::w64());
			assert_eq!(even_digit().width(), BitWidth::w64());
			assert_eq!(odd_digit().width(), BitWidth::w64());
		}

		#[test]
		fn get_ok() {
			for &pos in VALID_TEST_POS_VALUES {
				assert_eq!(digit::ONES.get(pos), Ok(Bit::Set));
				assert_eq!(digit::ZERO.get(pos), Ok(Bit::Unset));
				assert_eq!(even_digit().get(pos), Ok(if pos % 2 == 0 { Bit::Set } else { Bit::Unset }));
				assert_eq!(odd_digit().get(pos), Ok(if pos % 2 == 1 { Bit::Set } else { Bit::Unset }));
			}
		}

		#[test]
		fn get_fail() {
			for &pos in INVALID_TEST_POS_VALUES {
				let expected_err = Err(Error::invalid_bit_access(pos, BitWidth::w64()));
				assert_eq!(digit::ONES.get(pos), expected_err);
				assert_eq!(digit::ZERO.get(pos), expected_err);
				assert_eq!(digit::even_digit().get(pos), expected_err);
				assert_eq!(digit::odd_digit().get(pos), expected_err);
			}
		}

		#[test]
		fn set_ok() {
			for &val in TEST_DIGIT_REPRS {
				let mut digit = Digit(val);
				for &pos in VALID_TEST_POS_VALUES {
					digit.set(pos).unwrap();
					assert_eq!(digit.get(pos), Ok(Bit::Set));
				}
			}
		}

		#[test]
		fn set_fail() {
			for &pos in INVALID_TEST_POS_VALUES {
				let expected_err = Err(Error::invalid_bit_access(pos, BitWidth::w64()));
				assert_eq!(digit::ONES.set(pos), expected_err);
				assert_eq!(digit::ZERO.set(pos), expected_err);
				assert_eq!(digit::even_digit().set(pos), expected_err);
				assert_eq!(digit::odd_digit().set(pos), expected_err);
			}
		}

		// pub fn set(&mut self, n: usize) -> Result<()> {
		// pub fn unset(&mut self, n: usize) -> Result<()> {
		// pub fn flip(&mut self, n: usize) -> Result<()> {
		// pub fn set_all(&mut self) {
		// pub fn unset_all(&mut self) {
		// pub fn flip_all(&mut self) {
		// pub fn set_first_n(&mut self, n: usize) -> Result<()> {
		// pub fn unset_first_n(&mut self, n: usize) -> Result<()> {
		// pub fn retain_last_n(&mut self, n: usize) -> Result<()> {

		#[test]
		fn retain_last_n() {
			let mut d = ONES;
			d.retain_last_n(32).unwrap();
			assert_eq!(d, Digit(0x0000_0000_FFFF_FFFF));
		}
	}
}